

1 | P a g e

GertDuino Board
Exclusively From

User Manual
By: G.J. van Loo, Version 1.4

Dated: 6th Nov 2013

2 | P a g e

1 Contents

 Contents .. 2

1 Introduction .. 3
1.1 Identify ... 3
1.2 Comparison ... 4
1.3 Vext ... 4

2 RS232/UART .. 4
2.1 Atmega-328 & Pi UART ... 5
2.2 Atmega-48 UART ... 5

3 Atmega-328 ... 6
3.1 Features ... 6
3.2 Program the Atmega-328 ... 6
3.3 Using/running the Atmega-328 .. 7

4 Atmega-48 .. 7
4.1 Features ... 7
4.2 Program the Atmega-48 ... 7
4.3 Using/running the Atmega-48 ... 8
4.4 Real Time Cloc ... 8
4.5 Infra-red receiver/remote control receiver ... 8
4.6 Battery Drain .. 9
4.7 Atmega-48 LED trick .. 10

5 Connectors .. 11
5.1 Alternate functions. .. 11
5.2 Atmega-328 .. 13
5.3 Atmega-48 .. 14
5.4 Raspberry-Pi ... 15

6 Frequently Asked Questions (FAQs) .. 16
7 How to start ... 17

7.1 On the Raspberry-Pi: ... 17
7.2 On a PC .. 17

8 Example programs .. 19
8.1 Atmega-328 .. 19
8.2 Atmega-48 .. 23

9 Control Arduino Reset ... 265
10 Appendix A : GertDuino Schematic ... 26

3 | P a g e

1 Introduction
The GertDuino is a Raspberry-Pi add-on board which offers the same functionality as an
Arduino-Uno but with some extra added features.

1.1 Identify
The picture below lets you identify the various functions on the board.

• RS232 level converter can be used by:
o Raspberry-Pi
o or Atmega-328
o or Atmega-48

• Atmega 328 (Arduino-Uno® compatible) with:
o Arduino-Uno® compatible connectors
o Reset button
o 2 user push buttons
o 6 LEDs.

• Atmega 48 with:
o I/O connector with 20 pins.
o High precision RTC crystal
o Battery backup power supply
o IRDA interface

PCB Overview:

Atmega 328

R232 Jumpers

Atmega 48

2 user buttons 6 LEDS

Reset button

Battery for RTC

IRDA receiver

More I/O RTC X-tal

Picture
1: GertDuino Functions

4 | P a g e

1.2 Comparison
There are some differences between a normal Arduino-Uno and the GertDuino.

Table 1: Comparison GertDuino vs Arduino-Uno

1.3 Vext
As the board does not have a separate supply the Vext is not connected. If you want it
connected you have to add the following components:

J1, L4 (or a short instead of L4), D20 (or a short instead of D20).

2 RS232/UART
The Gerduino board has a RS232 level converter which will convert the signals form a UART to
the RS232 standard voltages (And invert them as per that same standard). The RS232 signals
come from J12.

Pin 3 is the receive
Pin 2 is the transmit
Pin 1 is the ground

Function Arduino-Uno GertDuino
USB Slave interface -
Reset button Yes Yes
Power supply 7..12V, ~250mA <5V Raspberry-Pi>
3V3 supply ~50mA ~150mA.
LED's One Not-buffered Six Buffered
User pushbuttons - Two
RS232 buffer - Yes
Real-Time-Clock - Yes
Infra-red interface - Yes

5 | P a g e

Connections can be made in many ways:

2.1 Atmega-328 & Pi UART
Pi to RS232 buffers Atmega-328 to RS232 buffers Pi to Atmega-328

Raspberry-Pi

Atmega 328
RS232
buffers

Raspberry-Pi

Atmega 328
RS232
buffers

Raspberry-Pi

Atmega 328
RS232
buffers

Atmega
48

Atmega
48

Atmega
48

2.2 Atmega-48 UART

Atmega-48 to RS232 buffers Atmega-48 to Atmega-328 Atmega-48 to Pi

Raspberry-Pi

Atmega 328
RS232
buffers

Raspberry-Pi

Atmega 328
RS232
buffers

Raspberry-Pi

Atmega 328
RS232
buffers

Atmega
48

Atmega
48

Atmega
48

6 | P a g e

3 Atmega-328

3.1 Features
This device is compatible with the Arduino Uno. In contrast to the 328 on the GERTBOARD this
device runs of 5V, has the 16MHz oscillator and has connectors which are 100% Arduino-Uno
compatible. It also contains the reset switch.

This board also has the following components which you will not find on the Uno:

• 2 User push buttons
• 6 LEDs1

LEDs
One LED is connected to PB5 (aka Port-13 aka SCK). This is compatible with the UNO. The
GertDuino has a five more LEDs. The total list of LEDs is:

- PB5 (Port-13)
- PB1 (Port-9)
- PB2 (Port-10)
- PD3 (Port-3)
- PD5 (Port-5)
- PD6 (Port-6)

The LEDs are not directly connected but are buffered and thus do not give any significant load
on the signal pins.

User buttons
The two user buttons are connected to pins PC2 and PC3. They will only function correctly if the
pins have an internal or external pull-up. The button are connected through a 1K Ohm resistor
so they will not cause a short if a pin is set as output and the button is pressed.

3.2 Program the Atmega-328
To program this device from the Raspberry-Pi you have to place the following 4 jumpers:

Then run the script Program 328as described in section 8.1.Atmega-328.

To program the 328 using a JTAG-ICE you need to use the "squid" cable and make the following
connections:

1 LED: The first debug tool any programmer grabs for.

7 | P a g e

 At the left there are the GND (white) and 5V (Purple) connections.
 At the top row right are the Reset (green), Mosi (Red), Clk (Black) and Miso (Grey)2.
 The equivalent JTAG names for these are: nSRST, TDI, TCK, TDO

3.3 Using/running the Atmega-328
When the device has been programmed it will run that program independent of the Raspberry-
Pi. In fact you can remove the board from the Raspberry-Pi and use it standalone.

When developing programs you may leave the jumpers in place as the programme will tri-state
its pins and set the reset pin high when it has finished. This is NOT the case if the PI is reset or
not powered. Especially the reset-jumper needs to be removed otherwise the Raspberry-Pi GPIO
pin 8 (which is default low) will the keep the 328 device in reset or you can run the reset_off
script.

You should also remove the jumpers if you want to use any of the following pins: B3,B4,B5,C6.

4 Atmega-48

4.1 Features
This device is intended to be used as Real Time Clock (RTC) and/or as IRDA front end. However
it is also freely programmable by the user and thus can be used for any other application, giving
the user the power of not one but TWO Atmega devices to play with.

Note: The I2C interface of the Atmega-48 is connected permanently to the Raspberry-Pi I2C
interface <GOIO0/1 on rev1, GPIO 2/3 on rev2>.

Also beware that if you make programming errors with the Atmege-328 the device can easily be
replaced. This is not the case with the Atmega-48. It is therefore strongly recommended that
you are extra careful and do not damage any of the I/O ports.

Spare connections.
The following I/O pins of the Atmega-48 are not used and are brought out to a connector:
B0,B1,B2, B3, B4,B5, C0,C1,C2,C3,D0,D1,D4, D5, D6, D7.

Beware that B3, B4 and B5 are also used for programming the device.

4.2 Program the Atmega-48
To program the Atmega-48 from the Raspberry-Pi you have to place the following 4 jumpers:

The programming is the same as the 328 but replace "328p" with "48pa".

2 The colours used here are the same as on MY squid cable but I can't guarantee all squid cables are the same.

8 | P a g e

To program the 48 using a JTAG-ICE you need to use the "squid" cable and make the following
connections:

 At the left there are the GND (white) and 5V (Purple) connections.
 At the bottom row right are the Reset (green), Mosi (Red), Clk (Black) and Miso (Grey).3
 The equivalent JTAG names for these are: nSRST, TDI, TCK, TDO

4.3 Using/running the Atmega-48
What was written about the 328 also is valid for the 48: when the device has been programmed
it will run that program independent of the Raspberry-Pi. In fact you can remove the board from
the Raspberry-Pi and use it standalone.

When developing programs you may leave the jumpers in place as the programme will tri-state
its pins and set the reset pin high when it has finished. This is NOT the case if the PI is reset or
not powered. Especially the reset-jumper needs to be removed otherwise the Raspberry-Pi GPIO
pin 8 (which is default low) will the keep the 48 device in reset or you can run the reset_off
script.

You should also remove the jumpers if you want to use any of the following pins: B3,B4,B5,C6.

4.4 Real Time Clock
The Atmege-48 device has a 32768Hz crystal connected to operate as a Real-Time-Clock (RTC).
Example code for this can be found under section 8.2 Atmega-48. The Crystal is a high quality
type and under normal conditions a deviation is less than 1 sec/3 days.

The other part of the RTC is that the Atmega-48 has a 3V battery. It will switch to that battery
when the 5V power is removed. As the Atmega-48 is a fully programmed microcontroller it can
be set-up to perform other operations or hold other data when the main power of the BCM2835
is removed.

If you have programmed the Atmege-48 correctly it uses ~1µA when powered down.

4.5 Infra-red receiver/remote control receiver
The BCM2835 does not have a native IRDA interface. The protocol can be implemented using a
standard GPIO pin but that puts a very heavy burden on the CPU. To support IRDA the Atmega-
48 has a TSSOP4038 IRD device connected to pin D3. This device supports the most common
IRDA protocol: 38KHz IR signal.

Unfortunately we could not run the IRDA interface from the battery as it uses too much current
(~450 µA). Thus you need the 5V present for it to operate.

3 The colours used here are the same as on MY squid cable but I can't guarantee all squid cables are the same.

9 | P a g e

The IRDA can also be used if the GertDuino is used stand-alone to control the connected logic
using a remote control.

Note that 95% of all TV/Video/CD remote controls use the 38KHz infra-red signal, but the
coding varies greatly from type to type.

4.6 Battery Drain
If a battery is present and the power of the Raspberry-Pi is switched of the Atmega-48 will still
remain powered by the Battery. It will also keep running. Unless the battery is removed or the
Atmega-48 is programmed to go into a special ultra-low-power condition, the battery will be
drained in a short time.

Even if you think the device is in ultra-low-power mode it can still consume power if it has to
drive outputs high.

Measurements have also show that if a UART connection exists between the Atmega-48 to the
Raspberry-Pi (even if it is not used) that increases the lower power current from 1µA to about
100µA.

To measure the current consumption you have to use a 3V supply and connect it to the battery
holder but between the supply and the battery holder you have to place a current (Ampere)
meter. Optionally you can connect a scope on one of the I/O pins of the Atmege48 to see if the
program is running. You should NOT connect anything to one of the output which loads an I/O
pin as that will cause extra current consumption.
This is a block diagram of the setup:

A

3V

Atmega48pa

Gertduino

GND

And this is how it looks in real life:

The meter shows a current consumption of 1.3µAmp. (The meter is shown enlarged in the lower
left hand corner of the picture) .

10 | P a g e

If possible limit the current from your power source to a few milli-amps. I managed to blow a
fuse of my meter performing the measurements because I accidentally shorted the supply when
placing the probe on the battery holder.

4.7 Atmega-48 LED trick
If you are debugging, an LEDs is often the first tool you reach for. But the Atmega-48 does not
have any LEDs. However the Atmega-328 does! There are two ways in which you can use these
LEDs :

• The safest way is to remove the 328 from its socket.
• The second way is to erase the 328 so that all its pins are inputs.

You can then use the connectors to feed a signal to an LED. Simplest way is to use a female-
male strap between connector J10 and e.g. pins, 2,3 or 6 of J14.

11 | P a g e

5 Connectors
The board contains a number of connectors. You will find that in the document the connectors of
the Atmega devices have two ways of numbering: There are the single numbers 0..13 and
A1..A3. These are the numbers used in many Arduino example programs. Alongside those I use
the official pin names (PB0..PB7, PD0..PD7, PCO..PC3). The latter are easier to use if you have
to work with the AVR datasheet.

5.1 Alternate functions.
The Atmega-328 and the Atemege-48 have exactly the same pins with the same functionality.
The devices only differ in the size of their various memories. The following is a table of the pins
and all the functions they can carry. These where copied from the AVR datasheet. For details of
the functions you should read that datasheet.

Name Functions
- PB7 XTAL2 (Chip Clock Oscillator pin 2)

TOSC2 (Timer Oscillator pin 2)
PCINT7 (Pin Change Interrupt 7)

- PB6 XTAL1 (Chip Clock Oscillator pin 1 or External clock input)
TOSC1 (Timer Oscillator pin 1)
PCINT6 (Pin Change Interrupt 6)

13 PB5 SCK (SPI Bus Master clock Input)
PCINT5 (Pin Change Interrupt 5)

12 PB4 MISO (SPI Bus Master Input/Slave Output)
PCINT4 (Pin Change Interrupt 4)

11 PB3 MOSI (SPI Bus Master Output/Slave Input)
OC2A (Timer/Counter2 Output Compare Match A Output)
PCINT3 (Pin Change Interrupt 3)

10 PB2 SS (SPI Bus Master Slave select)
OC1B (Timer/Counter1 Output Compare Match B Output)
PCINT2 (Pin Change Interrupt 2)

9 PB1 OC1A (Timer/Counter1 Output Compare Match A Output)
PCINT1 (Pin Change Interrupt 1)

8 PB0 ICP1 (Timer/Counter1 Input Capture Input)
CLKO (Divided System Clock Output)
PCINT0 (Pin Change Interrupt 0)

12 | P a g e

Name Functions

A5 PC5
ADC5 (ADC Input Channel 5)
SCL (2-wire Serial Bus Clock Line)
PCINT13 (Pin Change Interrupt 13)

A4 PC4
ADC4 (ADC Input Channel 4)
SDA (2-wire Serial Bus Data Input/Output Line)
PCINT12 (Pin Change Interrupt 12)

A3 PC3 ADC3 (ADC Input Channel 3)
PCINT11 (Pin Change Interrupt 11)

A2 PC2 ADC2 (ADC Input Channel 2)
PCINT10 (Pin Change Interrupt 10)

A1 PC1 ADC1 (ADC Input Channel 1)
PCINT9 (Pin Change Interrupt 9)

A0 PC0 ADC0 (ADC Input Channel 0)
PCINT8 (Pin Change Interrupt 8)

Name Functions

7 PD7 AIN1 (Analog Comparator Negative Input)
PCINT23 (Pin Change Interrupt 23)

6 PD6 AIN0 (Analog Comparator Positive Input)
OC0A (Timer/Counter0 Output Compare Match A Output)
PCINT22 (Pin Change Interrupt 22)

5 PD5 T1 (Timer/Counter 1 External Counter Input)
OC0B (Timer/Counter0 Output Compare Match B Output)
PCINT21 (Pin Change Interrupt 21)

4 PD4 XCK (USART External Clock Input/Output)
T0 (Timer/Counter 0 External Counter Input)
PCINT20 (Pin Change Interrupt 20)

3 PD3 INT1 (External Interrupt 1 Input)
OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT19 (Pin Change Interrupt 19)

2 PD2 INT0 (External Interrupt 0 Input)
PCINT18 (Pin Change Interrupt 18)

1 PD1 TXD (USART Output Pin)
PCINT17 (Pin Change Interrupt 17)

0 PD0 RXD (USART Input Pin)
PCINT16 (Pin Change Interrupt 16)

13 | P a g e

5.2 Atmega-328
The Atmega-328 pins are brought to connectors compatible with the Arduino-Uno.

 J14 J7

1 1

11

1

1

1
1

1

 1 1

11

1

1

1
1

1

Pin
No.

Signal Pin
No.

Signal

10 A5/PC5/SCL 8 7/PD7/AIN1
9 A4/PC4/SDA 7 6/PD6/AIN0/LED6
8 AREF 6 5/PD5/T1/LED5
7 Ground 5 4/PD4/T0
6 13/PB5/SCK/LED0 4 3/PD3/INT1/LED4
5 12/PB4/MISO 3 2/PD2/INT0
4 11/PB3/MOSI 2 1/PD1/TXD
3 10/PB2/SS/LED2 1 0/PD0/RXD
2 9/PB1/PCINT1/LED1
1 8/PB0/CLK0

Pin 1 is on the right-hand side so these tables top-to-bottom are the pins from left-to-right.

 J9 J6

1 1

11

1

1

1
1

1

 1 1

11

1

1

1
1

1

Pin
No.

Signal Pin
No.

Signal

8 NC 6 A5/PC5/SCL
7 Ground 5 A4/PC4/SDA
6 Ground 4 A3/PC3/ADC3/BUT1
5 5V 3 A2/PC2/ADC2/BUT0
4 3V3 2 A1/PC1/ADC1
3 Reset (Active low) 1 A0/PC0/ADC0
2 5V
1 NC

Pin 1 is on the left-hand side so these tables top-to-bottom are the pins from right-to-left.

Beware that Pin 8 of J9 is normally connected directly to the input voltage which has been
removed and thus is NC here.

14 | P a g e

5.3 Atmega-48
All unused pin of the Atmega-48 are brought out to a 20 -pin connector:

1 1

11

1

1

1
1

1

1

20

13 : PB5/SCK
12 : PB4/MISO
11 : PB3/MOSI
10 : PB2/SS
9 : PB1/PCINT1
8 : PB0/CLK0
7 : PD7/AIN1
6 : PD6/AIN0
5 : PD5/T1
GroundGround

T0/PD4 : 4
TXD/PD1 : 1
RXD/PD0 : 0

ADC3/PC3 : A3
ADC2/PC2 : A2
ADC1/PC1 : A1
ADC0/PC0 : A0

VBAT/5V
5V

The supply 5V/VBAT which goes to the Atmega-48 also goes to the connector pin 3. Any
equipment connected to that pin will also draw current from the battery if the 5V is switched off.

The supply comes through a Schottky diode so the actual voltage is lower: ~4.5 Volts. Also the
current consumption should be limited ~100mA.

The following pins of the ATmega-48 are dedicated connected:

Pin Hard wired to Function
PD2 5V Supply Detect absence of 5V supply (for RTC)

PD3 IRDA output Receive IRDA signal
PC5 SCL I2C connection with the Pi
PC4 SDA I2C connection with the Pi
PB7 XTAL1 32768Hz Tuning crystal
PB6 XTAL2 32768Hz Tuning crystal
PC6 Program reset Reset when programming

The Atmege-48 does not have a dedicated reset pin as that would interfere with its function as
real-time-clock. A reset can be obtained by pulling pin 4 of J13 low.

15 | P a g e

5.4 Raspberry-Pi
All connections between the board and the Raspberry-Pi are protected against 5V signals. The
I2C bus has FET level switches. All the other signals use resistive dividers.
The following connections of the Raspberry-Pi are used:

 5V
 3V3 (I2C level converters only)
 GPIO0/2 (I2C SDA)
 GPIO1/3 (I2C SCL)

The following connections of the Raspberry-Pi are used if the programming jumpers or UART
jumpers are placed:

 GPIO14 (UART-Tx)
 GPIO15 (UART-Rx)
 GPIO8 (Reset)
 GPIO9 (MISO)
 GPIO10 (MOSI)
 GPIO11 (SCLK)

16 | P a g e

6 Frequently Asked Questions (FAQs)
Some questions you may ask and the answers.

avrdude: AVR device not responding
Q: When I try to program the device I get an error: "avrdude: AVR device not responding."
A: The most likely cause is that you have forgotten to place the four programming jumpers.

See section 3.2 Program the Atmega-328.

Why is my program slow?
Q: When I run the program it is very slow. Where I expect a delay of 1second it takes much

longer.
A: Straight from the factory the CPU runs from the internal 8MHz clock and that is divided by

8. Thus the processor runs at 1 MHz. To switch to the full speed, using the external 16MHz
oscillator run the avrdude command as described in 8.1Atmega-328under "Initial clock
setup"

Why does my program not run?
Q: When I upload the program it runs fine but when I halt the Raspberry-Pi or when I start the

Raspberry-Pi my program does not work.
A: GPIO 8 controls the Reset of the Arduino. This pins must be high but for your program to

run. The simplest solution is to remove the programming jumpers. Alternative is to program
the GPIO-8 pin high using the reset_off script. The avrdude with the -c gpio option does this
for you so normally after programming the reset has been removed.

I have a different compiler
Q: I use the AVR compiler on my PC. How do I program the Atmega on the Raspberry-Pi?
A: I have only experience with the GCC version (AVR 5.1 and higher). After compilation you

find a .hex file in the debug directory. You have to transfer that file somehow to the
Raspberry-Pi and use the programmer script Program 328 as described in 8.1Atmega-328
to program the device(s) on the GertDuino. (If you have the script already installed use
"./program_328 <hex file>)

The Raspberry-Pi boots different: it has big text and not the normal prompt!
Q: When I plug the GertDuino on the Raspberry-Pi it boots different: It has big text and not the

normal prompt!
A: Pin 5 of the GPIO connector is used to indicate ‘safe boot mode’. If that pin is low when

booting the Raspberry-Pi boots in “safe mode”. Pin 5 is also connected to the Atmge-48. It
is one of the I2C pins. Thus if your 48 is driving a LOW on that pin the Pi always boots in
safe mode.
To prevent this you can put “avoid_safe_mode=1” in the config.txt file and the pi will boot
normally.

Why is there no battery supplied
Q: The GertDuino has a battery holder but there is no battery in there. Why do I have to buy

my own?
A: These batteries are lithium batteries. Those are classified as ‘Dangerous Goods’ and

require special paper work, warning labels and other precautions when shipped. And that is
for shipping within the UK. International shipping becomes a nightmare. So we decided to
leave it off.

17 | P a g e

7 How to start
Before you can program the devices you need to have a cross compiler. A cross compiler is a
compiler which runs on one type of processor, but generates code for a different type. In this
case the compiler runs on the Raspberry-Pi (ARM11 device) but makes code for the Atmel
devices.

7.1 On the Raspberry-Pi:
When programming the Atmel devices on the Raspberry-Pi you have two choices:

• Use the Arduino GUI
• Use the GCC Atmel compiler

For both you need to have a cross compiler for the Atmega devices. Easiest is to install the
Arduino package:

sudo apt-get install arduino

avrdude
You need to use a program called "avrdude" to program the devices BUT you need a special
version of "avrdude" which can program the devices using the GPIO of the Raspberry-Pi. Thanks
for Gordon Henderson (projects.drogon.net) who has provided these:

Standard Debian Squeeze:

cd /tmp
wget http://project-downloads.drogon.net/gertboard/avrdude_5.10-4_armel.deb
sudo dpkg -i avrdude_5.10-4_armel.deb
sudo chmod 4755 /usr/bin/avrdude

Debian Raspbian:

cd /tmp
wget http://project-downloads.drogon.net/gertboard/avrdude_5.10-4_armhf.deb
sudo dpkg -i avrdude_5.10-4_armhf.deb
sudo chmod 4755 /usr/bin/avrdude

You can now compile programs for the Atmega devices and upload the program into the chip on
the GertDuino. Example source code, Makefile and how to upload the program can all be found
in section 8 Example programs.

If you want to use the Arduino development environment you have to adapt it. See
projects.drogon.net/raspberry-pi/gertboard/arduino-ide-installation-isp/ how to do that.

7.2 On a PC
Atmel have a free C-compiler. You can get information about the latest version here:
http://www.atmel.com/tools/ATMELSTUDIO.aspx

You can compile on the PC but you need to transfer the final .hex file to the Raspberry-Pi before
you can program the Atmega devices.

18 | P a g e

Alternative is that you buy a JTAG-ICE box and use that to program and the devices but that is
a lot more expensive. It does have the advantage that you can use it for debugging as well:
Step through the program, set breakpoints ,inspect variables etc.

19 | P a g e

8 Example programs

8.1 Atmega-328

blink.c source code:

/*
 * blink.c
 *
 * Created: 23/09/2013 21:04:02
 * Author: G.J. van Loo
 * Simple example program to 'walk' the LEDs
 */

#include <avr/io.h>

#define DELAY 250
#define F_CPU 16000000

// Some macros that make the code more readable
#define output_low(port,pin) port &= ~(1<<pin)
#define output_high(port,pin) port |= (1<<pin)
#define set_input(portdir,pin) portdir &= ~(1<<pin)
#define set_output(portdir,pin) portdir |= (1<<pin)

// Outputs are:
// LED0 = PB5
// LED1 = PB1
// LED2 = PB2
// LED3 = PD3
// LED4 = PD5
// LED5 = PD6

void delay_ms(unsigned int ms)
{
 uint16_t delay_count = F_CPU / 17500;
 volatile uint16_t i;

 while (ms != 0) {
 for (i=0; i != delay_count; i++);
 ms--;
 }
} // delay_ms

void delay()
{ long d;
 unsigned char oldb,oldd;
 for (d=0; d<DELAY; d++)
 {
 delay_ms(1);
 if ((PINC & 0b00001000)==0)
 {
 oldb = PORTB;

20 | P a g e

 oldd = PORTD;
 PORTB = 0xFF;
 PORTD = 0xFF;
 delay_ms(1);
 PORTB = oldb;
 PORTD = oldd;
 d--;
 }
 else
 { if ((PINC & 0b00000100)==0)
 d--;
 else
 delay_ms(1);
 } // if button pressed
 } // if button pressed
} // delay

int main(void)
{ // int b;
 // Set all LED connections to output
 DDRB = 0b00100110;
 DDRD = 0b01101000;
 PORTB = 0x00;
 PORTD = 0x00;
 // Set button (port C) to input
 DDRC = 0b00000000;
 // pull-up on C2 & C3:
 PORTC = 0b00001100;

 while(1)
 { // convoluted but simple walk the leds
 output_high(PORTB,5);
 delay();
 output_low (PORTB,5);
 output_high(PORTB,1);
 delay();
 output_low (PORTB,1);
 output_high(PORTB,2);
 delay();
 output_low (PORTB,2);
 output_high(PORTD,3);
 delay();
 output_low (PORTD,3);
 output_high(PORTD,5);
 delay();
 output_low (PORTD,5);
 output_high(PORTD,6);
 delay();
 output_low (PORTD,6);
 output_high(PORTD,5);
 delay();
 output_low (PORTD,5);
 output_high(PORTD,3);
 delay();
 output_low (PORTD,3);
 output_high(PORTB,2);

21 | P a g e

 delay();
 output_low (PORTB,2);
 output_high(PORTB,1);
 delay();
 output_low (PORTB,1);
 } // forever
} // main

Makefile

Makefile:
Make the GertDuino m328p firmware.

Copyright (c) 2013 Gordon Henderson <projects@drogon.net>

This file is part of gertduino-m328:
#Software to run on the Atmega328p processor on the Gerduino board
#Can be used for the Atmega328p processor on the GERTBOARD as well
This is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this. If not, see <http://www.gnu.org/licenses/>.

TARGET=blink

MCU=atmega328p
FREWQ=16000000

Debug
#DEBUG = -gstabs

C flags
CC = avr-gcc
#CFLAGS = $(DEBUG) -O3 -Wall -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(FREWQ) $(INCLUDE)
CFLAGS = $(DEBUG) -O2 -mcall-prologues -Wall -std=gnu99 -mmcu=$(MCU) -
DF_CPU=$(FREWQ) $(INCLUDE)

LD = avr-gcc
#LDFLAGS2=-Wl,-uvfprintf -lprintf_flt
LDFLAGS = -mmcu=$(MCU) $(DEBUG) $(LIBLOC) $(LDFLAGS2)
#LIBS = -ldross -lm
SRC = $(TARGET).c
OBJ = $(SRC:.c=.o)

all: $(TARGET).hex

$(TARGET).hex: $(TARGET).elf
 @echo [hex] $<

22 | P a g e

avrdude -qq -c gpio -p atmega328p -U lock:w:0x3F:m -U efuse:w:0x07:m -
U lfuse:w:0xE7:m -U hfuse:w:0xD9:m

 @avr-objcopy -j .text -j .data -O ihex $(TARGET).elf $(TARGET).hex

$(TARGET).elf: $(OBJ)
 @echo [Link] $<
 @$(LD) -o $@ $(OBJ) $(LDFLAGS) $(LIBS)
 @avr-size $(TARGET).elf

Generate .lst file rule
%.lst : %.o
 @echo [lst] $<
 @avr-objdump -h -S $<> $@

.c.o:
 @echo [CC] $<
 @$(CC) -c $(CFLAGS) $< -o $@

.PHONEY: clean
clean:
 rm -f *.o *.elf *.hex *.lst Makefile.bak *~

Program 328

#!/bin/bash
script to program 328p device using AVRDUDE and a hex file
if ["$1" == ""]; then echo Missing argument
 exit 1;
fi
if ends in .hex use full argument
otherwise add the .hex
ext=${1:${#1}-4}
if ["$ext" == ".hex"]; then
 /usr/bin/avrdude -c gpio -p m328p $1 -Uflash:w:$1
else
 /usr/bin/avrdude -c gpio -p m328p $1.hex -Uflash:w:$1.hex
fi

Save the above code in a file called program_328 and then run "chmod 777 program_328". Use
./program_328 <hex file> to program the Atmega device.

Initial clock setup

You normally run the above command when you get a brand new device. It programs the
Atmega328 to use the external 16MHz Crystal.

23 | P a g e

8.2 Atmega-48
This section shows an example program for the Atmega48. You will find that the makefile and
the programming files are very similar to the 328 example.

low_power.c source code:

// Example code which uses the 32767KHz
// Crystal to implement a 1-second event
// handler
//
// Atmega Low power operation example
// Using a 32768 Khz crystal on timer 2 and full power down mode
// to implement a 1-second event handler
//
// This code is written for the GCC compiler
// Example for the GertDuino Atmega 48PA device
// (This program will NOT run on the 328!)
// This code is freeware
//

#include <avr/interrupt.h>
#include <avr/sleep.h>

volatile unsigned long count_seconds;

main()
{
 // set PB0 as output
 DDRB = 0xFE;

// Set-up 32 KHz oscillator
 TIMSK2 = 0x00; // No interrupts
 ASSR = 0x20; // async run from xtal
 TCNT2 = 0; // clear counter
 TCCR2B = 0x05; // prescale 5=/128

 // Wait for all 'busy' bits to be clear
 // That happens on the first timer overflow
 // which can take 8 seconds if you have a max pre-scaler!!
 while (ASSR&0x07) ;

 TIMSK2 = 0x01; // overflow IRQ enable

 count_seconds = 0; // clear seconds counter
 sei(); //set the Global Interrupt Enable Bit

 while (1)
 {
 SMCR = 0x7; // Go into lowest power sleep mode
 asm("sleep");
 asm("nop");
 // Interrupt woke us up
 // If we get here the interrupt routine has already been called

 // Toggle LED on port B0 using LS timer bit
 PORTB = count_seconds & 0x01;
 }
} // main

//

24 | P a g e

// Timer 2 overflow
// if we set timer2 up correctly this routine is called every second
//
ISR(TIMER2_OVF_vect)
{ count_seconds++; // all we do here is count seconds elapsed
}

Makefile:

Makefile:
Make the GertDuino m48p firmware.

Copyright (c) 2013 Gordon Henderson <projects@drogon.net>

This file is part of gertduino-m328:
#Software to run on the Atmega328p processor on the Gerduino board
#Can be used for the Atmega328p processor on the GERTBOARD as well
This is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this. If not, see <http://www.gnu.org/licenses/>.

TARGET=low_power

MCU=atmega48p
FREWQ=1000000

Debug
#DEBUG = -gstabs

C flags
CC = avr-gcc
#CFLAGS = $(DEBUG) -O3 -Wall -std=gnu99 -mmcu=$(MCU) -
DF_CPU=$(FREWQ) $(INCLUDE)
CFLAGS = $(DEBUG) -O2 -mcall-prologues -Wall -std=gnu99 -mmcu=$(MCU) -
DF_CPU=$(FREWQ) $(INCLUDE)

LD = avr-gcc
#LDFLAGS2=-Wl,-uvfprintf -lprintf_flt
LDFLAGS = -mmcu=$(MCU) $(DEBUG) $(LIBLOC) $(LDFLAGS2)
#LIBS = -ldross -lm
SRC = $(TARGET).c
OBJ = $(SRC:.c=.o)

all: $(TARGET).hex

$(TARGET).hex: $(TARGET).elf
 @echo [hex] $<
 @avr-objcopy -j .text -j .data -O ihex $(TARGET).elf $(TARGET).hex

25 | P a g e

$(TARGET).elf: $(OBJ)
 @echo [Link] $<
 @$(LD) -o $@ $(OBJ) $(LDFLAGS) $(LIBS)
 @avr-size $(TARGET).elf

Generate .lst file rule
%.lst : %.o
 @echo [lst] $<
 @avr-objdump -h -S $<> $@

.c.o:
 @echo [CC] $<
 @$(CC) -c $(CFLAGS) $< -o $@

.PHONEY: clean
clean:
 rm -f *.o *.elf *.hex *.lst Makefile.bak *~

Program 48

#!/bin/bash
script to program 48pa device using AVRDUDE and a hex file
if ["$1" == ""]; then
 echo Missing argument
 exit 1;
fi
if ends in .hex use full argument
otherwise add the .hex
ext=${1:${#1}-4}
if ["$ext" == ".hex"]; then
 /usr/bin/avrdude -c gpio -p m48p $1 -Uflash:w:$1
else
 /usr/bin/avrdude -c gpio -p m48p $1.hex -Uflash:w:$1.hex
fi

Save the above code in a file called "program_48" and then run "chmod 777 program_48". Use
./program_48 <hex file> to program the Atmega 48 device.

9 Control Arduino Reset
The Raspberry-Pi GPIO 8 pin controls the Arduino reset pin when the jumpers are in place.
When starting the pin is LOW and thus the Arduino chip is held in reset. To control the reset
(gpio-8 pin) you can use the scripts shown below.

Don’t forget to change the mode of the text file to executable format: (chmod 777 reset_off).
Depending on your path you may have to call the script starting with a <dot><slash>:
“./reset_off”.

Alternative copy the scripts to /usr/bin: “sudo cp reset_off /usr/bin”. If you want the Raspberry
Pi to always execute the script at boot up you have to edit the /etc/rc.local file. Make sure that
you have the full path in there. Thus if you have installed the script in /usr/bin you have to add
the following line to /etc/rc.local:

/usr/bin/reset_off

26 | P a g e

reset_off

The following script will release the Arduino reset and thus make that the Arduino chip runs. It
only works if the GertDuino is plugged in to the Raspberry Pi and the reset jumper is in place.

#!/usr/bin/sudo bash
Set GPIO pin 8, high releasing Arduino reset
sudo echo "8" >/sys/class/gpio/export
sudo echo "out" >/sys/class/gpio/gpio8/direction
sudo echo "1" >/sys/class/gpio/gpio8/value
sudo echo "8" >/sys/class/gpio/unexport

reset_on

The following script will assert the Arduino reset and thus make that the Arduino chip stops, is
held in reset. It only works if the GertDuino is plugged in to the Raspberry Pi and the reset
jumper is in place.

#!/usr/bin/sudo bash
Set GPIO pin 8, low activating Arduino reset
sudo echo "8" >/sys/class/gpio/export
sudo echo "out" >/sys/class/gpio/gpio8/direction
sudo echo "0" >/sys/class/gpio/gpio8/value
sudo echo "8" >/sys/class/gpio/unexport

10 Appendix A : GertDuino Schematic

	Contents
	1 Introduction
	Identify
	Comparison
	Vext

	RS232/UART
	Atmega-328 & Pi UART
	Atmega-48 UART

	Atmega-328
	Features
	Program the Atmega-328
	Using/running the Atmega-328

	Atmega-48
	Features
	Program the Atmega-48
	Using/running the Atmega-48
	Real Time Clock
	Infra-red receiver/remote control receiver
	Battery Drain
	Atmega-48 LED trick

	Connectors
	Alternate functions.
	Atmega-328
	Atmega-48
	Raspberry-Pi

	Frequently Asked Questions (FAQs)
	How to start
	On the Raspberry-Pi:
	On a PC

	Example programs
	Atmega-328
	Atmega-48

	Control Arduino Reset
	Appendix A : GertDuino Schematic

