Features

- High Performance, Low Power AVR ${ }^{\circledR}$ 8-Bit Microcontroller
- Advanced RISC Architecture
- 54 Powerful Instructions - Most Single Clock Cycle Execution
- 16 x 8 General Purpose Working Registers
- Fully Static Operation
- Up to 12 MIPS Throughput at 12 MHz
- Non-volatile Program and Data Memories
- 512/1024 Bytes of In-System Programmable Flash Program Memory
- 32 Bytes Internal SRAM
- Flash Write/Erase Cycles: 10,000
- Data Retention: 20 Years at $85^{\circ} \mathrm{C} / 100$ Years at $25^{\circ} \mathrm{C}$
- Peripheral Features
- One 16-bit Timer/Counter with Prescaler and Two PWM Channels
- Programmable Watchdog Timer with Separate On-chip Oscillator
- 4-channel, 8-bit Analog to Digital Converter ${ }^{(1)}$
- On-chip Analog Comparator
- Special Microcontroller Features
- In-System Programmable ${ }^{(2)}$
- External and Internal Interrupt Sources
- Low Power Idle, ADC Noise Reduction, and Power-down Modes
- Enhanced Power-on Reset Circuit
- Programmable Supply Voltage Level Monitor with Interrupt and Reset
- Internal Calibrated Oscillator
- I/O and Packages
- Four Programmable I/O Lines
- 6-pin SOT and 8-pad UDFN
- Operating Voltage:
- 1.8 - 5.5V
- Programming Voltage:
-5V
- Speed Grade
- 0-4 MHz @ 1.8-5.5V
- 0-8 MHz@ 2.7-5.5V
- 0-12 MHz @ 4.5-5.5V
- Industrial Temperature Range
- Low Power Consumption
- Active Mode:
- $200 \mu \mathrm{~A}$ at 1 MHz and 1.8 V
- Idle Mode:
- $25 \mu \mathrm{~A}$ at 1 MHz and 1.8 V
- Power-down Mode:
- $<0.1 \mu \mathrm{~A}$ at 1.8 V

Note: 1. The Analog to Digital Converter (ADC) is available in ATtiny5/10, only
2. At 5V, only

1. Pin Configurations

Figure 1-1. Pinout of ATtiny $4 / 5 / 9 / 10$

	UDFN		
(PCINT1/TPICLK/CLKI/ICP0/OC0B/ADC1/AIN1) PB1	-1	8	PB2 (T0/CLKO/PCINT2/INTO/ADC2)
NC	2	7	VCC
NC	3	6	PB3 (RESET/PCINT3/ADC3)
GND	4	5	PB0 (AIN0/ADC0/OCOA/TPIDATA/PCINTO)

1.1 Pin Description

1.1.1 VCC

Supply voltage.
1.1.2 GND

Ground.

1.1.3 Port B (PB3..PB0)

This is a 4-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. The output buffers have symmetrical drive characteristics, with both high sink and source capability. As inputs, the port pins that are externally pulled low will source current if pullup resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The port also serves the functions of various special features of the ATtiny $4 / 5 / 9 / 10$, as listed on page 37.

1.1.4 \quad RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 16-4 on page 120. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

2. Overview

ATtiny4/5/9/10 are low-power CMOS 8-bit microcontrollers based on the compact AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny 4/5/9/10 achieve throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 16 general purpose working registers and system registers. All registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is compact and code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny $4 / 5 / 9 / 10$ provide the following features: 512/1024 byte of In-System Programmable Flash, 32 bytes of SRAM, four general purpose I/O lines, 16 general purpose working registers, a 16-bit timer/counter with two PWM channels, internal and external interrupts, a programmable watchdog timer with internal oscillator, an internal calibrated oscillator, and four software selectable power saving modes. ATtiny $5 / 10$ are also equipped with a four-channel, 8 -bit Analog to Digital Converter (ADC).

Idle mode stops the CPU while allowing the SRAM, timer/counter, ADC (ATtiny5/10, only), analog comparator, and interrupt system to continue functioning. ADC Noise Reduction mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC. In Power-down mode registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset. In Standby mode, the oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The onchip, in-system programmable Flash allows program memory to be re-programmed in-system by a conventional, non-volatile memory programmer.

The ATtiny 4/5/9/10 AVR are supported by a suite of program and system development tools, including macro assemblers and evaluation kits.

2.1 Comparison of ATtiny4, ATtiny5, ATtiny9 and ATtiny10

A comparison of the devices is shown in Table 2-1.
Table 2-1. Differences between ATtiny4, ATtiny5, ATtiny9 and ATtiny 10

Device	Flash	ADC	Signature
ATtiny4	512 bytes	No	$0 \times 1 \mathrm{E} 0 \times 8 \mathrm{~F} 0 \times 0 \mathrm{~A}$
ATtiny5	512 bytes	Yes	$0 \times 1 \mathrm{E} 0 \times 8 \mathrm{~F} 0 \times 09$
ATtiny9	1024 bytes	No	$0 \times 1 \mathrm{E} 0 \times 900 \times 08$
ATtiny10	1024 bytes	Yes	$0 \times 1 \mathrm{E} 0 \times 900 \times 03$

3. General Information

3.1 Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

3.3 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at $85^{\circ} \mathrm{C}$ or 100 years at $25^{\circ} \mathrm{C}$.

3.4 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device has been characterized.
4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG	I	T	H	S	V	N	Z	C	Page 12
$0 \times 3 \mathrm{E}$	SPH	Stack Pointer High Byte								Page 12
$0 \times 3 \mathrm{D}$	SPL	Stack Pointer Low Byte								Page 12
$0 \times 3 \mathrm{C}$	CCP	CPU Change Protection Byte								Page 12
$0 \times 3 \mathrm{~B}$	RSTFLR	-	-	-	-	WDRF	-	EXTRF	PORF	Page 35
$0 \times 3 \mathrm{~A}$	SMCR	-	-	-	-	SM2	SM1	SM0	SE	Page 25
0x39	OSCCAL	Oscillator Calibration Byte								Page 21
0x38	Reserved	-	-	-	-	-	-	-	-	
0x37	CLKMSR	-	-	-	-	-	-	CLKMS1	CLKMS0	Page 21
0x36	CLKPSR	-	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPSO	Page 22
0x35	PRR	-	-	-	-	-	-	PRADC	PRTIM0	Page 26
0x34	VLMCSR	VLMF	VLMIE	-	-	-	VLM2	VLM1	VLM0	Page 34
0x33	NVMCMD	-	-	NVM Comman						Page 116
0x32	NVMCSR	NVMBSY	-	-	-	-	-	-	-	Page 116
0x31	WDTCSR	WDIF	WDIE	WDP3	-	WDE	WDP2	WDP1	WDP0	Page 32
0x30	Reserved	-	-	-	-	-	-	-	-	
0x2F	GTCCR	TSM	-	-	-	-	-	-	PSR	Page 80
0x2E	TCCR0A	COM0A1	COMOAO	COM0B1	COM0B0	-	-	WGM01	WGM00	Page 74
0x2D	TCCROB	ICNC0	ICESO	-	WGM03	WGM02	CS02	CS01	CSOO	Page 76
0x2C	TCCROC	FOCOA	FOC0B	-	-	-	-	-	-	Page 77
0x2B	TIMSK0	-	-	ICIEO	-	-	OCIE0B	OCIEOA	TOIE0	Page 79
0x2A	TIFR0	-	-	ICF0	-	-	OCFOB	OCFOA	TOV0	Page 80
0x29	TCNTOH	Timer/Counter0 - Counter Register High Byte								Page 78
0x28	TCNTOL	Timer/Counter0 - Counter Register Low Byte								Page 78
0x27	OCROAH	Timer/Counter0 - Compare Register A High Byte								Page 78
0x26	OCROAL	Timer/Counter0 - Compare Register A Low Byte								Page 78
0x25	OCROBH	Timer/Counter0 - Compare Register B High Byte								Page 78
0x24	OCROBL	Timer/Counter0 - Compare Register B Low Byte								Page 78
0x23	ICROH	Timer/Counter0 - Input Capture Register High Byte								Page 79
0x22	ICROL	Timer/Counter0 - Input Capture Register Low Byte								Page 79
0x21	Reserved	-	-	-	-	-	-	-	-	
0x20	Reserved	-	-	-	-	-	-	-	-	
0x1F	ACSR	ACD	-	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	Page 82
0x1E	Reserved	-	-	-	-	-	-	-	-	
0x1D	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	Page 94
$0 \times 1 \mathrm{C}$	ADCSRB	-	-	-	-	-	ADTS2	ADTS1	ADTS0	Page 95
0x1B	ADMUX	-	-	-	-	-	-	MUX1	MUXO	Page 94
0x1A	Reserved	-	-	-	-	-	-	-	-	
0x19	ADCL	ADC Conversion Result								Page 96
0x18	Reserved	-	-	-	-	-	-	-	-	
0x17	DIDR0	-	-	-	-	ADC3D	ADC2D	ADC1D	ADCOD	Page 83, Page 96
0x16	Reserved	-	-	-	-	-	-	-	-	
0×15	EICRA	-	-	-	-	-	-	ISC01	ISC00	Page 38
0x14	EIFR	-	-	-	-	-	-	-	INTF0	Page 39
0×13	EIMSK	-	-	-	-	-	-	-	INT0	Page 39
0x12	PCICR	-	-	-	-	-	-	-	PCIE0	Page 40
0x11	PCIFR	-	-	-	-	-	-	-	PCIF0	Page 40
0x10	PCMSK	-	-	-	-	PCINT3	PCINT2	PCINT1	PCINTO	Page 40
0x0F	Reserved	-	-	-	-	-	-	-	-	
0x0E	Reserved	-	-	-	-	-	-	-	-	
$0 \times 0 \mathrm{D}$	Reserved	-	-	-	-	-	-	-	-	
$0 \times 0 \mathrm{C}$	PORTCR	-	-	-	-	-	-	BBMB	-	Page 51
0x0B	Reserved	-	-	-	-	-	-	-	-	
$0 \times 0 \mathrm{~A}$	Reserved	-	-	-	-	-	-	-	-	
0x09	Reserved	-	-	-	-	-	-	-	-	
0x08	Reserved	-	-	-	-	-	-	-	-	
0x07	Reserved	-	-	-	-	-	-	-	-	
0x06	Reserved	-	-	-	-	-	-	-	-	
0x05	Reserved	-	-	-	-	-	-	-	-	
0x04	Reserved	-	-	-	-	-	-	-	-	
0x03	PUEB	-	-	-	-	PUEB3	PUEB2	PUEB1	PUEB0	Page 51
0x02	PORTB	-	-	-	-	PORTB3	PORTB2	PORTB1	PORTB0	Page 52
0x01	DDRB	-	-	-	-	DDRB3	DDRB2	DDRB1	DDRB0	Page 52
0x00	PINB	-	-	-	-	PINB3	PINB2	PINB1	PINB0	Page 52

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O Registers within the address range $0 \times 00-0 \times 1 F$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.
4. The ADC is available in ATtiny $5 / 10$, only.
5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add without Carry	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,S,H	1
ADC	Rd, Rr	Add with Carry	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,S,H	1
SUB	Rd, Rr	Subtract without Carry	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,S,H	1
SUBI	Rd, K	Subtract Immediate	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,S,H	1
SBC	Rd, Rr	Subtract with Carry	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,S,H	1
SBCI	Rd, K	Subtract Immediate with Carry	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,S,H	1
AND	Rd, Rr	Logical AND	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V,S	1
ANDI	Rd, K	Logical AND with Immediate	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V,S	1
OR	Rd, Rr	Logical OR	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{Rr}$	Z,N,V,S	1
ORI	Rd, K	Logical OR with Immediate	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N,V,S	1
EOR	Rd, Rr	Exclusive OR	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V,S	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow$ \$FF - Rd	Z,C,N,V,S	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow \$ 00-\mathrm{Rd}$	Z,C,N,V,S,H	1
SBR	Rd, K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \mathrm{v}$ K	Z,N,V,S	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(\$ \mathrm{FFh}-\mathrm{K})$	Z,N,V,S	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V,S	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V,S	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V,S	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V,S	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow$ \$FF	None	1
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC}(15: 0) \leftarrow \mathrm{Z}, \mathrm{PC}(21: 16) \leftarrow 0$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3/4
ICALL		Indirect Call to (Z)	$\mathrm{PC}(15: 0) \leftarrow \mathrm{Z}, \mathrm{PC}(21: 16) \leftarrow 0$	None	3/4
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4/5
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4/5
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	$\mathrm{Rd}-\mathrm{Rr}$	Z, C,N,V,S,H	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z, C,N,V,S,H	1
CPI	Rd, K	Compare with Immediate	Rd-K	Z, C,N,V,S,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	A, b	Skip if Bit in I/O Register Cleared	if $(1 / \mathrm{O}(\mathrm{A}, \mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIS	A, b	Skip if Bit in I/O Register is Set	if $(/ / O(A, b)=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(\mathrm{N} \oplus \mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(\mathrm{N} \oplus \mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if ($\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if ($\mathrm{T}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if ($\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V,H	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$\operatorname{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N, V, H	1
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow C, \operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3 . .0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
SBI	A, b	Set Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{A}, \mathrm{b}) \leftarrow 1$	None	1
CBI	A, b	Clear Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{A}, \mathrm{b}) \leftarrow 0$	None	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}$ (b)	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$C \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	I	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$S \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Two's Complement Overflow.	$V \leftarrow 1$	V	1
CLV		Clear Two's Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Copy Register	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	1/2
LD	Rd, X^{+}	Load Indirect and Post-Increment	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Decrement	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2/3
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	1/2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Increment	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Decrement	$Y \leftarrow Y-1, R d \leftarrow(Y)$	None	2/3
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	1/2
LD	Rd, Z_{+}	Load Indirect and Post-Increment	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Decrement	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2/3
LDS	Rd, k	Store Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	1
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	1
ST	$\mathrm{X}+$, Rr	Store Indirect and Post-Increment	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	1
ST	- X, Rr	Store Indirect and Pre-Decrement	$X \leftarrow X-1,(X) \leftarrow R \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	1
ST	Y + , Rr	Store Indirect and Post-Increment	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	1
ST	- Y, Rr	Store Indirect and Pre-Decrement	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	1
ST	Z ${ }_{\text {, }}$ Rr	Store Indirect and Post-Increment.	$(\mathrm{Z}) \leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	1
ST	-Z, Rr	Store Indirect and Pre-Decrement	$Z \leftarrow Z-1,(Z) \leftarrow \operatorname{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	1
IN	Rd, A	In from I/O Location	$\mathrm{Rd} \leftarrow \mathrm{I} / \mathrm{O}(\mathrm{A})$	None	1
OUT	A, Rr	Out to I/O Location	$\mathrm{I} / \mathrm{O}(\mathrm{A}) \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
MCU CONTROL INSTRUCTIONS					
BREAK		Break	(see specific descr. for Break)	None	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR)	None	1

6. Ordering Information

6.1 ATtiny4

Speed (MHz)	Power Supply	Ordering Code ${ }^{(1)}$	Package ${ }^{(2)}$	Operational Range
12	1.8-5.5V	ATtiny4-TSHR ${ }^{(3)}$ ATtiny4-MAHR ${ }^{(4)}$	6ST1 8MA4	Industrial $\left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)^{(5)}$
		ATtiny4-TS8R ${ }^{(3)}$	6ST1	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)^{(6)} \end{gathered}$

Notes: 1. Tape and reel.
2. All packages are Pb -free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny4:

- Topside: T4x (x stands for "die revision")
- Bottomside: zHzzz [H stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$], z8zzz [8 stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$]

4. Topside marking for ATtiny4:

> - 1st Line: T4
> - 2nd Line: xx
> - 3rd Line: $x x x$
5. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny $4 / 5 / 9 / 10$ Specification at $125^{\circ} \mathrm{C}$.

Package Type	
6ST1	6-lead, $2.90 \times 1.60 \mathrm{~mm}$ Plastic Small Outline Package (SOT23)
8MA4	8-pad, $2 \times 2 \times 0.6 \mathrm{~mm}$ Plastic Ultra Thin Dual Flat No Lead (UDFN)

6.2 ATtiny5

Speed (MHz)	Power Supply	Ordering Code ${ }^{(1)}$	Package ${ }^{(2)}$	Operational Range
12	1.8-5.5V	ATtiny5-TSHR ${ }^{(3)}$ ATtiny5-MAHR ${ }^{(4)}$	6ST1 8MA4	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)^{(5)} \end{gathered}$
		ATtiny5-TS8R ${ }^{(3)}$	6ST1	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)^{(6)} \end{gathered}$

Notes: 1. Tape and reel.
2. All packages are Pb -free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny5:

- Topside: T5x (x stands for "die revision")
- Bottomside: zHzzz [H stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$], z8zzz [8 stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$]

4. Topside marking for ATtiny5:

- 1st Line: T5
- 2nd Line: $x x$
- 3rd Line: xxx

5. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny $4 / 5 / 9 / 10$ Specification at $125^{\circ} \mathrm{C}$.

Package Type	
6ST1	6-lead, $2.90 \times 1.60 \mathrm{~mm}$ Plastic Small Outline Package (SOT23)
8MA4	8-pad, $2 \times 2 \times 0.6 \mathrm{~mm}$ Plastic Ultra Thin Dual Flat No Lead (UDFN)

6.3 ATtiny9

Speed (MHz)	Power Supply	Ordering Code ${ }^{(1)}$	Package ${ }^{(2)}$	Operational Range
12	1.8-5.5V	ATtiny9-TSHR ${ }^{(3)}$ ATtiny9-MAHR ${ }^{(4)}$	6ST1 8MA4	Industrial $\left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)^{(5)}$
		ATtiny9-TS8R ${ }^{(3)}$	6ST1	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)^{(6)} \end{gathered}$

Notes: 1. Tape and reel.
2. All packages are Pb -free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny9:

- Topside: T9x (x stands for "die revision")
- Bottomside: zHzzz [H stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$], z8zzz [8 stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$]

4. Topside marking for ATtiny9:

- 1st Line: T9
- 2nd Line: $x x$
- 3rd Line: $x x x$

5. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny $4 / 5 / 9 / 10$ Specification at $125^{\circ} \mathrm{C}$.

Package Type	
6ST1	6-lead, $2.90 \times 1.60 \mathrm{~mm}$ Plastic Small Outline Package (SOT23)
8MA4	8-pad, $2 \times 2 \times 0.6 \mathrm{~mm}$ Plastic Ultra Thin Dual Flat No Lead (UDFN)

6.4 ATtiny10

Speed (MHz)	Power Supply	Ordering Code ${ }^{(1)}$	Package ${ }^{(2)}$	Operational Range
12	1.8-5.5V	ATtiny $10-$ TSHR $^{(3)}$ ATtiny $10-\mathrm{MAHR}^{(4)}$	6ST1 8MA4	Industrial $\left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)^{(5)}$
		ATtiny $10-\mathrm{TS8R}{ }^{(3)}$	6ST1	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)^{(6)} \end{gathered}$

Notes: 1. Tape and reel.
2. All packages are Pb -free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
3. Top/bottomside markings for ATtiny 10 :

- Topside: T10x (x stands for "die revision")
- Bottomside: zHzzz [H stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$], z8zzz [8 stands for $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$]

4. Topside marking for ATtiny 10 :

- 1st Line: T10
- 2nd Line: $x x$
- 3rd Line: $x x x$

5. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny $4 / 5 / 9 / 10$ Specification at $125^{\circ} \mathrm{C}$.

Package Type	
6ST1	6-lead, $2.90 \times 1.60 \mathrm{~mm}$ Plastic Small Outline Package (SOT23)
8MA4	8-pad, $2 \times 2 \times 0.6 \mathrm{~mm}$ Plastic Ultra Thin Dual Flat No Lead (UDFN)

7. Packaging Information

7.1 6ST1

7.2 8MA4

Note: 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	0.60	
A1	0.00	-	0.05	
b	0.20	-	0.30	
D	1.95	2.00	2.05	
D2	1.40	1.50	1.60	
E	1.95	2.00	2.05	
E2	0.80	0.90	1.00	
e	-	0.50	-	
L	0.20	0.30	0.40	
K	0.20	-	-	

2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS COPLANARITY SHALL NOT EXCEED 0.05 mm .
3. WARPAGE SHALL NOT EXCEED 0.05 mm .
4. REFER JEDEC MO-236/MO-252

12/17/09

	TITLE	GPC	DRAWING NO.	REV.
Package Drawing Contact: packagedrawings@atmel.com	8PAD, $2 \times 2 \times 0.6 \mathrm{~mm}$ body, 0.5 mm pitch, $0.9 \times 1.5 \mathrm{~mm}$ exposed pad, Saw singulated Thermally enhanced plastic ultra thin dual flat no lead package (UDFN/USON)	YAG	8MA4	A

8. Errata

8.1 ATtiny4

8.1.1 Rev. E

The revision letters in this section refer to the revision of the corresponding ATtiny4/5/9/10 device.

- Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround
When programming Lock Bits, make sure lock mode is not set to present, or lower levels.
8.1.2 Rev. \mathbf{D}

- ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$
- Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$

The device meets ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$.

Problem Fix / Workaround

Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround
When programming Lock Bits, make sure lock mode is not set to present, or lower levels.
8.1.3 Rev. A - C

Not sampled.

8.2 ATtiny5

8.2.1 Rev. E

- Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.
Problem Fix / Workaround
When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.2.2
 Rev. D

- ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$
- Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$

The device meets ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$.
Problem Fix / Workaround
Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround
When programming Lock Bits, make sure lock mode is not set to present, or lower levels.
8.2.3 Rev. A - C

Not sampled.

8.3 ATtiny9

8.3.1 Rev. E

- Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround
When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.3.2 Rev. D

- ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$
- Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$

The device meets ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$.
Problem Fix / Workaround
Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.
8.3.3 Rev. A - C

Not sampled.

8.4 ATtiny10

8.4.1 Rev. E

- Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround
When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.4.2 Rev. C - D

- ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$
- Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$

The device meets ESD HBM (ESD STM 5.1) level $\pm 1000 \mathrm{~V}$.
Problem Fix / Workaround
Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround
When programming Lock Bits, make sure lock mode is not set to present, or lower levels.
8.4.3 Rev. A - B

Not sampled.

9. Datasheet Revision History

9.1 Rev. 8127D - 02/10

1. Added UDFN package in "Features" on page 1, "Pin Configurations" on page 2, "Ordering Information" on page 10, and in "Packaging Information" on page 14
2. Updated Figure 8-2 and Figure 8-3 in Section 8.2.1 "Power-on Reset" on page 28
3. Updated Section 8.2.3 "External Reset" on page 29
4. Updated Figures $17-36$ and $17-51$ in "Typical Characteristics"
5. Updated notes in Section 6. "Ordering Information" on pages 10-13
6. Added device Rev. E in Section 8. "Errata" on page 16

9.2 Rev. 8127C - 10/09

1. Updated values and notes:

- Table 16-1 in Section 16.2 "DC Characteristics" on page 117
- Table 16-3 in Section 16.4 "Clock Characteristics" on page 119
- Table 16-6 in Section 16.5.2 "VCC Level Monitor" on page 120
- Table 16-9 in Section 16.8 "Serial Programming Characteristics" on page 122

2. Updated Figure $16-1$ in Section 16.3 "Speed" on page 118
3. Added Typical Characteristics Figure 17-36 in Section 17.8 "Analog Comparator Offset" on page 141. Also, updated some other plots in Typical Characteristics.
4. Added topside and bottomside marking notes in Section 6. "Ordering Information" on page 10, up to page 13
5. Added ESD errata, see Section 8. "Errata" on page 16
6. Added Lock bits re-programming errata, see Section 8. "Errata" on page 16

9.3 Rev. 8127B - 08/09

1. Updated document template
2. Expanded document to also cover devices ATtiny4, ATtiny5 and ATtiny9
3. Added section:

- "Comparison of ATtiny4, ATtiny5, ATtiny9 and ATtiny 10" on page 4

4. Updated sections:

- "ADC Clock - clkADC" on page 18
- "Starting from Idle / ADC Noise Reduction / Standby Mode" on page 20
- "ADC Noise Reduction Mode" on page 24
- "Analog to Digital Converter" on page 25
- "SMCR - Sleep Mode Control Register" on page 25
- "PRR - Power Reduction Register" on page 26
- "Alternate Functions of Port B" on page 49
- "Overview" on page 84
- "Physical Layer of Tiny Programming Interface" on page 97
- "Overview" on page 108
- "ADC Characteristics (ATtiny5/10, only)" on page 121
- "Supply Current of I/O Modules" on page 123
- "Register Summary" on page 6
- "Ordering Information" on page 10

5. Added figure:

- "Using an External Programmer for In-System Programming via TPI" on page 98

6. Updated figure:

- "Data Memory Map (Byte Addressing)" on page 15

7. Added table:

- "Number of Words and Pages in the Flash (ATtiny4/5)" on page 110

8. Updated tables:

- "Active Clock Domains and Wake-up Sources in Different Sleep Modes" on page 23
- "Reset and Interrupt Vectors" on page 36
- "Number of Words and Pages in the Flash (ATtiny9/10)" on page 110
- "Signature codes" on page 111

9.4 Rev. 8127A - 04/09

1. Initial revision

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia	Atmel Europe
Unit 1-5 \& 16, 19/F	Le Krebs
BEA Tower, Millennium City 5	8, Rue Jean-Pierre Timbaud
418 Kwun Tong Road	BP 309
Kwun Tong, Kowloon	78054 Saint-Quentin-en-
Hong Kong	Yvelines Cedex
Tel: (852) 2245-6100	France
Fax: (852) 2722-1369	Tel: (33) 1-30-60-70-00
	Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site	Technical Support	Sales Contact www.atmel.com
avr@atmel.com	www.atmel.com/contacts	

Literature Requests

www.atmel.com/literature

Abstract

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, $A V R ®$, and others are registered trademarks, or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

