

Embedded Pi User Manual

Rev. 1.0 Release: 2013-05-06

Website: www.coocox.org

Forum: forum.coocox.org

Techinal: master@coocox.com

Market: market@coocox.com

http://www.coocox.org/
http://www.coocox.org/Forum/index.php
mailto:master@coocox.com
mailto:market@coocox.com

1

Catalog
Embedded Pi User Manual .. 0

Catalog .. 1

1 Introduction .. 3

2 Key Features .. 4

3 Hardware Layout and Configuration ... 5

3.1 Block Diagram ... 5

3.2 ESD Precautions .. 7

3.3 MCU .. 8

3.4 Power .. 8

3.4.1 Power Supply ... 8

3.4.2 Power Pins ... 9

3.5 ArduinoTM Form-factor Compatibility.. 9

3.5.1 Power section .. 10

3.5.2 Analog section ... 10

3.5.3 ICSP/ SPI .. 10

3.5.4 Digital section .. 11

3.6 Embedded Pi Extended Interfaces .. 12

3.6.1 Custom Section.. 12

3.6.2 Analog Section ... 13

3.6.3 Digital Section .. 13

3.7 Raspberry Pi Connector ... 14

3.8 Program the Embedded Pi .. 15

3.8.1 ISP mode ... 15

3.8.2 External Debugger Mode .. 16

3.9 Button.. 17

3.10 LED .. 17

3.11 System Clock Source .. 18

3.12 Jumper... 18

4 Operation Modes .. 19

4.1 STM32/Standalone Mode ... 19

2

4.1.1 Hardware connections .. 19

4.1.2 Software Resources ... 20

4.2 ST-Adapter Mode .. 22

4.2.1 Hardware Connections .. 23

4.2.2 Software Resources ... 24

4.3 Raspberry Pi Mode .. 24

4.3.1 Hardware Connections .. 26

4.3.2 Software Resources ... 26

5 Getting Started .. 27

6 Schematics .. 41

7 References ... 45

7.1 Cortex-M3 ... 45

7.2 STM32 ... 45

7.3 CooCox .. 45

7.4 Raspberry Pi .. 46

7.5 ArduinoTM .. 46

3

1 Introduction

Figure 1-1 Embedded Pi board

Embedded Pi is a triple-play platform for Raspberry Pi, ArduinoTM and 32-bit embedded ARM.

Blending all three communities together, Embedded Pi helps you to get the most out of each

platform. The Embedded Pi is based on the STMicroelectronics STM32F103 MCU, and can

operate as a bridge between Raspberry Pi and ArduinoTM shields and in standalone mode as a

Cortex-M3 evaluation board.

Depending on the jumper placement on the Embedded Pi, you can select each of the three

modes of operation:

 STM32/Standalone Mode

The Embedded Pi works as an ArduinoTM form-factor compatible mother board where the

STM32 controls the ArduinoTM shields directly without the use of Raspberry Pi. More…

 ST-Adapter Mode

The STM32 controls the ArduinoTM shields, and the Raspberry Pi works as the GUI or

command line console to send commands/data to and receive data from the STM32. More…

 Raspberry Pi Mode

The Embedded Pi works as a hardware connection bridge between Raspberry Pi and

ArduinoTM shields, allowing the Raspberry Pi to interface directly with existing ArduinoTM

shields. More…

4

The figure below shows the hardware connections of different modes.

Figure 1-2 Hardware connections of 3 operation modes

2 Key Features

 Provides Raspberry Pi with easy access to abundant ArduinoTM shields.

‒ Compatible with both 5V and 3.3V ArduinoTM shields, selectable with jumpers

‒ Hundreds of ArduinoTM shields available on the market enhance the control capability

of Raspberry Pi, e.g. to control Motor, sensors, etc.

 Brings 32-bit ARM MCU into the world of ArduinoTM.

‒ 32-bit ARM Cortex-M3 STM32F103 MCU operating at 72MHz, with 128KB Flash, 20KB

RAM, motor control, USB, and CAN

‒ Hundreds of ArduinoTM shields available on the market with extremely portable drivers

provided or to be shared by CooCox and CoFans

‒ A complete set of FREE CooCox tools for ARM development

‒ A common footprint next to ArduinoTM footprint for connection with expansion

daughter cards which will be developed by CooCox

 Raspberry Pi and the STM32 MCU can work independently or in conjunction with each

other to control the ArduinoTM shields or other accessories.

5

3 Hardware Layout and Configuration

3.1 Block Diagram

STM32STM32

 IO PWM PWM IO PWM IO TX RX

 PWM- PWM+ PWM- PWM+ CTS2 RTS2 TX2 RX2

 SCL SDA AREF GND SCK MISO MOSI SS PWM IO

 SCL2 SDA2 IO IO SCK2 MISO2 MOSI2 SS2 CANTX CANRX

Embedded Pi Analog Input External InterfaceEmbedded Pi MCU ISP(Program Interface)

Arduino Power Interface Arduino ADC Interface

RPI Connecter

USB Micro-B

DC-005

(7V – 16V)

STM32
Debug

Connecter

Bus Switch & 3V3/5V Voltage-level translate

IIC SP
I

U
A

R
T

PW
M

CA
N

A
D

C

G
PI

O

IIC/SPI/UART/PWM/
ADC/GPIO/CAN

IIC/SPI/UART/
PWM/GPIO

Raspberry Pi
Connector

Embedded Pi On
Board MCU

Arduino-Compatible
Embedded Pi Board

3 Power Source
 (auto Switch)

External DC
USB

RPI_5V

Embedded Pi Extended Interfaces:
1 SPI, 1 I2C, 1 UART with Flow Ctrl,
2 Pairs PWM(+-),6 Analog Input,
1 CAN

Arduino Form-factor Compatible
Interfaces:
1SPI, 1I2C, 4PWM, 1 UART,
6 Analog Input

Figure 3-1 Hardware block diagram

Besides the ArduinoTM form-factor compatible interfaces onboard, Embedded Pi has some

additional SPI, IIC, UART interfaces, and some other extended interfaces like USB and CAN.

Users can use the MCU onboard or a connected Raspberry Pi to control ArduinoTM shields via the

ArduinoTM form-factor compatible interfaces. The following sections give a detailed introduction

of the operation modes and interfaces of Embedded Pi: 4 Operation Modes, 3.5 ArduinoTM

Form-factor Compatibility, 3.6 Embedded Pi Extended Interfaces, and 3.7 Raspberry Pi

Connector.

Embedded Pi has 3 power sources from which the power supply is auto-selected – USB

connection, an external DC power supply, or a Raspberry Pi. For more information, refer to 3.4

Power MCU.

6

Embedded Pi contains an ARM Cortex-M3 MCU STM32F103RBT6 which belongs to STM32 F1

series of mainstream MCUs.

The STM32 F1 is a series of mainstream MCUs covering the needs of a large variety of

applications in the industrial, medical and consumer markets. With this series of products, ST has

pioneered the world of ARM® Cortex™-M microcontrollers and set a milestone in the history of

embedded applications. High performance with first-class peripherals and low-power,

low-voltage operation is paired with a high level of integration at accessible prices with a simple

architecture and easy-to-use tools.

The features of STM32F103RBT6 are listed below:

 32-bit with ARM Cortex-M3 core running at up to 72MHz.

 128KB Flash for programming, 20KB SRAM.

 Embedded Internal RC 8MHz and 32 kHz, Real-Time Clock.

 16-bit Timers with Input Capture, Output Compare and PWM.

 16-bit 6-ch Advanced Timer, 2 16-bit Watchdog Timers, SysTick Timer

 Rich communication interfaces: 2 SPI, 2 I2C, 3 USART

 USB 2.0 Full Speed Interface, CAN 2.0B Active

 2 12-bit 16-ch A/D Converter

Figure 3-2 Embedded Pi board layout

7

GND

AREF

P
O
W
E
R

A
N
A
L
O
G

D
I
G
I
T
A
L

D
I
G
I
T
A
L

SPI
ID

0

15

ID

16

21

12

14

8

7

ID

9

10

11

13

1

6

35

4 2

3V3

VIN

5V

GND

NC

IOREF

RESET

GND

ID

22

27

ID

28

39

45

40

ID

3V3

RX1

NC

GND

BOOT0

BOOT1

RESET

TX1

NOTE:

1

25

2

26

Embedded Pi Extended
Interface

Arduino form-factor
compatible Interface

Raspberry Pi Interface

Figure 3-3 Pin IDs of the connectors

3.2 ESD Precautions

Please note that the Embedded Pi board comes without any

case/box and all components are exposed. Therefore, extra

attention must be paid to ESD (electrostatic discharge) precautions.

Please make sure there is no static interference when using the

board. Appropriate ESD protections must be taken and wearing

electrostatic equipment is recommended, such as wearing an

anti-static wristband.

ESD damage can range from subtle performance degradation to

complete device failure. Precision integrated circuits may be more

susceptible to damage because very small parametric changes

could cause the device not to meet its published specifications.

8

3.3 MCU

Embedded Pi contains an ARM Cortex-M3 MCU STM32F103RBT6 which belongs to STM32 F1

series of mainstream MCUs.

The STM32 F1 is a series of mainstream MCUs covering the needs of a large variety of

applications in the industrial, medical and consumer markets. With this series of products, ST has

pioneered the world of ARM® Cortex™-M microcontrollers and set a milestone in the history of

embedded applications. High performance with first-class peripherals and low-power,

low-voltage operation is paired with a high level of integration at accessible prices with a simple

architecture and easy-to-use tools.

The features of STM32F103RBT6 are listed below:

 32-bit with ARM Cortex-M3 core running at up to 72MHz.

 128KB Flash for programming, 20KB SRAM.

 Embedded Internal RC 8MHz and 32 kHz, Real-Time Clock.

 16-bit Timers with Input Capture, Output Compare and PWM.

 16-bit 6-ch Advanced Timer, 2 16-bit Watchdog Timers, SysTick Timer

 Rich communication interfaces: 2 SPI, 2 I2C, 3 USART

 USB 2.0 Full Speed Interface, CAN 2.0B Active

 2 12-bit 16-ch A/D Converter

3.4 Power

3.4.1 Power Supply

Like the ArduinoTM mother boards, Embedded Pi can be powered via USB connection or with an

external DC power supply. Besides, a connected Raspberry Pi can also supply power to it. The

power supply is auto-selected from these 3 sources.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The

adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack.

Leads from a battery or other DC power supply can be inserted in the GND and VIN pin headers

of the POWER connector.

Raspberry Pi can supply power to Embedded Pi by connecting P1 on Raspberry Pi with the

Raspberry Pi connector (J5) on the Embedded Pi board via the 26-pin IDC cable in the package.

Embedded Pi can operate on an external supply of 6 to 20 volts. If supplied with less than 7V,

however, the 5V pin may supply less than five volts and the board may be unstable. If using more

9

than 12V, the voltage regulator may overheat and damage the board. The recommended range is

7 to 12 volts.

Note: Embedded Pi has 3.3V and 5V outputs for power supply, selectable by JP1. You need to

check and select which output to use every time when powering on the stacked ArduinoTM

shields.

3.4.2 Power Pins

The power pins of Embedded Pi are fully compatible with those of ArduinoTM form-factor and

listed as below:

 VIN.

VIN is a voltage input pin connected to the input of the voltage conversion chip onboard

outputting 5V.

As VIN is connected to the power jack with a diode between them, the voltage on the pin

will be the same with the external power if any, ranging from 7 to 12V as recommended

above.

 5V.

This is a 5V output pin with 2 voltage sources: 5V from USB connection, or an onboard

voltage conversion chip if using a 7 to 12V external DC power supply.

Note: Please do not input any external power directly to the pin, or your board can be

damaged.

 3V3.

This is a 3.3V output pin extended from an onboard voltage conversion chip.

 GND.

Ground pins.

3.5 ArduinoTM Form-factor Compatibility

Embedded Pi has ArduinoTM form-factor compatible interfaces onboard, which provide easy

access to controlling the ArduinoTM shields.

We have defined a digital ID for each signal as the name of the pin.

10

3.5.1 Power section

Figure 3-4 Pin-outs of Arduino
TM

 form-factor power interfaces (left side of the dotted line)

3.5.2 Analog section

ArduinoTM form-factor compatible interfaces include 6 analog inputs, 2 of which have a multiple

function for IIC communication.

However, the 2 IIC pins have no analog input function on the Embedded Pi board. The specific IO

mapping of the pins are as below:

Table 3-1 IO mapping of Arduino
TM

 form-factor analog interfaces

Pin ID ArduinoTM Function STM32 IO MAP MCU Peripheral Function

16 AIN PC0 PC0/ADC10

17 AIN PC1 PC1/ADC11

18 AIN PC2 PC2/ADC12

19 AIN PC3 PC3/ADC13

20 I2C.SDA PB7 PB7/I2C1_SDA/TIM4_CH2/USART1_RX

21 I2C.SCL PB6 PB6/I2C1_SCL/TIM4_CH1/USART1_TX

3.5.3 ICSP/ SPI

Among ArduinoTM form-factor compatible interfaces, several digital IO and ICSP pins can also be

used as SPI interface by multiplexing. Embedded Pi has full compliance with ArduinoTM on these

pins. The specific IO mapping of the ICSP pins are as below:

Table 3-2 IO mapping of Arduino
TM

 form-factor ICSP interface

ArduinoTM Pin ArduinoTM Function STM32 IO MAP MCU Peripheral Function

11

ICSP.1 SPI.MISO PB14 PB14/SPI2_MISO/USART3_RTS/TIM

1_CH2N

ICSP.2 NC NC

ICSP.3 SPI.SCK PB13 PB13/SPI2_SCK/USART3_CTS/TIM1

_CH1N

ICSP.4 SPI.MOSI PB15 PB15/SPI2_MOSI/TIM1_CH3N

ICSP.5 NC NC

ICSP.6 GND NC

3.5.4 Digital section

ArduinoTM form-factor compatible interfaces include 16 digital IOs, which can also access 1 UART,

1 SPI, and 6 PWM signals by multiplexing. Embedded Pi has full compliance with ArduinoTM on

these pins. The specific IO mapping of the digital pins are as below:

Table 3-3 IO mapping of Arduino
TM

 form-factor digital interfaces

Pin ID ArduinoTM Function STM32F103 IO MAP MCU Peripheral Function

0 UART.RX PC11 PC11/USART3_RX

1 UART.TX PC10 PC10/USART3_TX

2 EXT.INT PC12 PC12/USART3_CK

3 EXT.INT / PWM PC6 PC6/TIM3_CH1

4 PC7 PC7/TIM3_CH2

5 PWM PC8 PC8/TIM3_CH3

6 PWM PC9 PC9/TIM3_CH4

7 PD2 PD2/TIM3_ETR

8 PA15 PA15/JTDI/TIM2_CH1_ETR/SPI1_NSS

9 PWM PA8 PA8/USART1_CK/TIM1_CH1/MCO

10 SPI.CS PB12 PB12/SPI2_NSS/I2C2_SMBAI/USART3_CK

/TIM1_BKIN

11 SPI.MOSI PB15 PB15/SPI2_MOSI/TIM1_CH3N

12 SPI.MISO PB14 PB14/SPI2_MISO/USART3_RTS/TIM1_CH

2N

13 SPI.CLK PB13 PB13/SPI2_SCK/USART3_CTS/TIM1_CH1

N

12

AREF NC

GND GND GND

14 I2C.SDA PB7 PB7/I2C1_SDA/TIM4_CH2/USART1_RX

15 I2C.SCL PB6 PB6/I2C1_SCL/TIM4_CH1/USART1_TX

Note: To use D8 (Pin ID 8), you need to connect SJ1 to D8 with electric iron and solders.

13

STM32-PA15

D8JP2-TDI

2
SJ1

3.6 Embedded Pi Extended Interfaces

The Embedded Pi extended interfaces beyond the ArduinoTM form-factor compatible interfaces

provide stronger control ability on expansion modules. The expanded pins, from D22 to D45,

including 1 SPI, 1 I2C, 1 UART with flow control, 2 pairs of PWM (+-), 6 analog inputs, and 1 CAN,

are introduced by 3 sections below.

3.6.1 Custom Section

This section is customized according to the features of MCU. It includes BOOT0 and BOOT1, the

special pins of STM32F103RBT6, and 2 pins with multiple functions including PWM and UART.

The UART function is for ISP download, which works together with BOOT0 and BOOT1.

Figure 3-5 Embedded Pi extended custom interfaces (right side of the dotted line)

Table 3-4 IO mapping of Embedded Pi extended custom interfaces

Pin ID Embedded Pi Function STM32F103 IO Map MCU Peripheral Function

26 PWM.P PA9 PA9/USART1_TX/TIM1_CH2

28 PWM.P PA10 PA10/USART1_RX/TIM1_CH3

13

3.6.2 Analog Section

Embedded Pi extended interfaces include 6 analog inputs, 4 of which shared the same MCU

interface with the ArduinoTM form-factor compatible interfaces due to the limited analog inputs

of STM32F103RBT6. The specific IO mapping of the analog pins are as below:

Table 3-5 IO mapping of Embedded Pi extended analog interfaces

Pin ID Embedded Pi Function STM32F103 IO Map MCU Peripheral Function

40 Analog PC0 PC0/ADC10

41 Analog PC1 PC1/ADC11

42 Analog PC2 PC2/ADC12

43 Analog PC3 PC3/ADC13

44 Analog PC4 PC4/ADC14

45 Analog PC5 PC5/ADC15

3.6.3 Digital Section

Embedded Pi extended interfaces include 16 digital IOs, which can also access 1 UART with flow

control, 2 pairs of differential PWM, 1 CAN, 1 SPI, and 1 IIC. The specific IO mapping of the digital

pins are as below:

Table 3-6 IO mapping of Embedded Pi extended digital interfaces

Pin ID Embedded Pi Function STM32F103 IO Map MCU Peripheral Function

22 UART.RX PA3 PA3/USART2_RX/ADC3/TIM2_CH4

23 UART.TX PA2 PA2/USART2_TX/ADC2/TIM2_CH3

24 UART.RTS PA1 PA1/USART2_RTS/ADC1/TIM2_CH2

25 UART.CTS PA0 PA0-WKUP/USART2_CTS/ADC0/TIM2

_CH1_ETR

26 PWM.P PA9 PA9/USART1_TX/TIM1_CH2

27 PWM.N PB0 PB0/ADC8/TIM3_CH3/TIM1_CH2N

28 PWM.P PA10 PA10/USART1_RX/TIM1_CH3

29 PWM.N PB1 PB1/ADC9/TIM3_CH4/TIM1_CH3N

30 CAN.RX PB8 PB8/TIM4_CH3/I2C1_SCL/CANRX

31 CAN.TX PB9 PB9/TIM4_CH4/I2C1_SDA/CANTX

14

32 SPI.SS PA4 PA4/SPI1_NSS/USART2_CK/ADC4

33 SPI.MOSI PA7 PA7/SPI1_MOSI/ADC7/TIM3_CH2/TI

M1_CH1N

34 SPI.MISO PA6 PA6/SPI1_MISO/ADC6/TIM3_CH1/TI

M1_BKIN

35 SPI.SCK PA5 PA5/SPI1_SCK/ADC5

36 PC13 PC13/ANT1_TAMP

37 PB5 PB5/I2C1_SMBAI/TIM3_CH2/SPI1_M

OSI

38 I2C.SDA PB11 PB11/I2C2_SDA/USART3_RX/TIM2_C

H4

39 I2C.SCL PB10 PB10/I2C2_SCL/USART3_TX/TIM2_C

H3

3.7 Raspberry Pi Connector

Raspberry Pi Connector (JP5) includes 17 digital IOs, which also have the function of IIC, SPI, or

UART. As the ArduinoTM form-factor compatible interfaces include only 16 digital IOs, pin 26 of

the Raspberry Pi is ignored on Embedded Pi. Below is the IO remapping of Raspberry Pi interfaces

on Embedded Pi board.

Table 3-7 IO remapping of Raspberry Pi interfaces

Note: Dn (n=1.2.3 …) stands for Digital Pin x.

Raspberry-Pi

Interface Pin ID
Raspberry-Pi Interface Function Embedded Pi Pin remap

1 3.3V Power 3.3V Power

2 5V Power 5V Power

3 GPIO0/SDA D14

4 5V Power NC

5 GPIO1/SCL D15

6 GND GND

7 GPIO4/GPCLK0 D9

8 GPIO14/TXD D1

9 GND NC

15

10 GPIO15/RXD D0

11 GPIO17 D2

12 GPIO18/PCM_CLK D3

13 GPIO21/PCM_DOUT D4

14 GND NC

15 GPIO22 D5

16 GPIO23 D6

17 3.3V Power NC

18 GPIO24 D7

19 GPIO10/MOSI D11

20 GND NC

21 GPIO9/MISO D12

22 GPIO25 D8

23 GPIO11/SCKL D13

24 GPIO8/CE0 D10

25 GND NC

26 GPIO7/CE1 NC

3.8 Program the Embedded Pi

3.8.1 ISP mode

In ISP mode, a PC programs the MCU onboard via the serial port (JP7-TX1 and JP7-RX1), refer to

section 3.6.1. To use this mode, you need to set BOOT0 to 1 (high level), and BOOT1 to 0 (low

level) – which has been done on hardware. In this case, you only need to press the BOOT0 button

to enter this mode when Embedded Pi is powered on.

The next steps are as below:

1) Install the ISP tool for Embedded Pi on your PC or Raspberry Pi. There are many ISP tools for

PC, and ST has provided a version for Windows system only. For details, please refer to

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_

MANUAL/CD00171488.pdf. Raspberry Pi uses the Linux system, where no ISP tools are

available yet, and need to be developed.

2) Disconnect Embedded Pi from power.

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf

16

3) Connect the ISP interface on Embedded Pi with your PC (or Raspberry Pi) according to the

instruction of the ISP tool. Figure 3-5 shows the pins of the ISP interface on Embedded Pi.

When using a PC to program Embedded Pi, an RS232 voltage conversion chip is needed

between to convert the TTL voltage level of Embedded Pi to the RS232 voltage level of PC.

4) Configure JP1 to select the bus voltage between 3.3V and 5V according to the ArduinoTM

shields in use. For configuration information of JP1, refer to 3.12 Jumper.

5) Power on Embedded Pi, the power indicator LED will be lighted. Press BOOT0 and hold it

there, and press RESET button for 1 second, then release BOOT0, the Embedded Pi will enter

the ISP mode.

6) Launch the ISP tool to program Embedded Pi.

3.8.2 External Debugger Mode

Since Embedded Pi has no debugger onboard, an external JTAG/SWD debugger is needed to

program Embedded Pi in the External Debugger Mode, like J-Link and CoLinkEx.

The configuration steps are as below:

1) Disconnect Embedded Pi from power.

2) Install the debugger driver on PC. You can ship this step if you have installed one. To install

the driver of CoLinkEx, refer to http://www.coocox.org/Colinkex.htm.

3) Install the integrated development environment on PC. You can ship this step if you have

installed one. To install CoIDE, refer to http://www.coocox.org/CooCox_CoIDE.htm.

4) Connect Embedded Pi to the PC via the 10-Pin JTAG/SWD interface (JP2).

Figure 3-6 Pin-outs of the 10-Pin JTAG/SWD interface

5) Power on Embedded Pi, the power indicator LED will be lighted.

6) Start download and debug your program.

Note: SWD debuggers are supported by default. To use a JTAG debugger, you need to connect

http://www.coocox.org/Colinkex.htm
http://www.coocox.org/CooCox_CoIDE.htm

17

SJ1 with JTDI first with electronic iron and solders.

13

STM32-PA15

D8JP2-TDI

2
SJ1

3.9 Button

Table 3-8 Function of buttons on Embedded Pi

Button ID Name Function Remark

1 RESET Reset the Embedded Pi or

the ArduinoTM shields in use

2 BOOT0 Select Boot Mode Reference:

1) STM32 Flash Programming

Manual (PM0042)

2) Chapter 3.8.1

3.10 LED

Table 3-9 Function of LEDs on Embedded Pi

LED ID Function Note

1 User LED 1) LED Pin – PB13

2) LED Control method

PB13 Pin high LED ON (Green)

PB13 Pin low LED OFF

2 Indicate Power Status Power ON LED ON (Green)

Power OFF LED OFF

18

3.11 System Clock Source

Table 3-10 System Clock Source Function of Embedded Pi

Clock Source ID Crystal Frequency Function

1 8MHz System main clock source

2 32.768KHz RTC input clock source

3.12 Jumper

Table 3-11 Function of Embedded Pi Jumpers

Jumper ID Function Description

JP1 Bus Power Selection

1

 Output 3V3

1

 Output 5V

JP3
Raspberry Pi Bus

Enablement
To configure operation mode.

JP4 STM32 Bus Enablement To configure operation mode.

Table 3-12 Operation mode configuration

Operation Mode Jumpers Configuration

STM32/Standalone Mode

ST-Adapter Mode

Raspberry Pi Mode

19

4 Operation Modes

The Embedded Pi has three operation modes, selectable by jumpers. Refer to 3.12 Jumper.

4.1 STM32/Standalone Mode

The Embedded Pi works as an ArduinoTM form-factor compatible mother board where the STM32

controls the ArduinoTM shields directly without the use of Raspberry Pi. It can sense the

environment by receiving input from a variety of sensors and can affect its surroundings by

controlling lights, motors, and other actuators.

STM32

CoX STM32 Library (HAL)

Hardware Layer

Application Layer

Arduino form
-factor

com
patible interfacesEP

I e
xt

en
de

d
in

te
rf

ac
es

Arduino Shields

LCD Motor Sensor

Key Network ...

1 SPI, 1 I2C, 1
UART with flow
control, 2 pairs
of PWM (+-), 6
analog inputs, 1
CAN

1 SPI, 1 I2C, 4
PWM, 1 UART,
6 analog inputs

CooCox Shields

LCD Motor Sensor

Key Network ...

Shield Driver Layer

LCD
Driver

Motor
Driver

Sensor
Driver

Key
Driver

WiFi, ETH
Driver ...

Figure 4-1 Block diagram of STM32 Mode

4.1.1 Hardware connections

The Embedded Pi is compatible with both 5V and 3.3V ArduinoTM shields, selectable with jumpers.

20

ArduinoTM shields can plug pin-to-pin onto Embedded Pi via the ArduinoTM footprint (I/O headers

rev3) / ArduinoTM form-factor compatible interfaces. Next to the ArduinoTM form-factor

compatible interfaces, the Embedded Pi also has on board the extended interfaces as SPI, UART,

I2C, PWM and CAN, making up another set of common footprint for connection with expansion

daughter cards which will be developed by CooCox.

The Embedded Pi allows the SWD/JTAG debugging via the SWD/JTAG port, and programming via

the ISP interface as well. It can be powered by auto-selection via USB connection, with an

external DC power supply, or with the connected Raspberry Pi.

Figure 4-2 Hardware connections of STM32 Mode

4.1.2 Software Resources

A quick & easy embedded project can be built in C using CooCox development tools from Embest,

a FREE and easy-to-use ARM development tool environment working in Windows XP

SP3/Windows Vista/Windows 7 system for Cortex-M MCU with flash programming & debugging

capability (CoIDE, CoFlash, CoLinkEx etc), along with the integrated abundant reusable code

shared by CooCox team and CoFans. Click here to get started with the Embedded Pi and CoIDE.

You can also view the demo video on: http://www.coocox.org/blog/?p=172

The table below shows the currently available ArduinoTM shield drivers based on CoX, which are

fully compatible with the Embedded Pi, and can be directly selected and added to user’s project

within CoIDE. Application examples are provided along with the drivers for direct use or

reference.

http://www.coocox.org/blog/?p=172

21

Table 4-1 Arduino
TM

 shield drivers based on CoX

ArduinoTM shield Driver link State Product page

DFRobot LCD

Shield

Done http://shieldlist.org/dfrobot/lcd

Adafruit Motor

Shield

Done http://shieldlist.org/adafruit/motor

Sensor_Shield Done

http://store.arduino.cc/ww/index.php?

main_page=product_info&cPath=16&pr

oducts_id=89

LCD4884 Shield Done http://shieldlist.org/dfrobot/lcd4884

DM163 Matrix

Shield

Done http://shieldlist.org/itead-studio/colors

EB-365 GPS

Shield

Done

http://store.iteadstudio.com/index.php?

main_page=product_info&cPath=18&pr

oducts_id=500

ArduinoTM

GPRS Shield

Under

Development
http://shieldlist.org/seeedstudio/gprs

ArduinoTM WiFi

Shield

Done

http://uk.farnell.com/arduino/a000058/

board-wifi-shield-w-intg-antenna/dp/22

12785

ArduinoTM

Motor Shield

Done

http://uk.farnell.com/arduino/a000079/l

298-motor-control-arduino-shield/dp/20

75346

For latest shared ArduinoTM shield drivers, visit http://www.coocox.org/driver/shield-mc9.html,

or click “Refresh” button on the top right corner of the Repository view in CoIDE, as shown in the

figure below.

Click the “Upload” button next to “Refresh” to share your ArduinoTM shield drivers with others by

just 4 steps.

http://www.coocox.org/Show_Driver_Comp/Displays-LCD/Alphanumeric/LCDShield/24.html
http://www.coocox.org/Show_Driver_Comp/Displays-LCD/Alphanumeric/LCDShield/24.html
http://shieldlist.org/dfrobot/lcd
http://www.coocox.org/Show_Driver_Comp/Shield/Motor/Motor_Shield/565.html
http://www.coocox.org/Show_Driver_Comp/Shield/Motor/Motor_Shield/565.html
http://shieldlist.org/adafruit/motor
http://www.coocox.org/Show_Driver_Comp/Shield/Sensor/Sensor_Shield/566.html
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=16&products_id=89
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=16&products_id=89
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=16&products_id=89
http://www.coocox.org/driver_comp/lcd4884-c582.html?mc=9&sc=51
http://shieldlist.org/dfrobot/lcd4884
http://www.coocox.org/driver_comp/dm163-dot-matrix-led-controller-driver-c588.html?mc=9&sc=50
http://www.coocox.org/driver_comp/dm163-dot-matrix-led-controller-driver-c588.html?mc=9&sc=50
http://shieldlist.org/itead-studio/colors
http://www.coocox.org/driver_comp/gps_shield-c587.html?mc=9&sc=49
http://www.coocox.org/driver_comp/gps_shield-c587.html?mc=9&sc=49
http://store.iteadstudio.com/index.php?main_page=product_info&cPath=18&products_id=500
http://store.iteadstudio.com/index.php?main_page=product_info&cPath=18&products_id=500
http://store.iteadstudio.com/index.php?main_page=product_info&cPath=18&products_id=500
http://shieldlist.org/seeedstudio/gprs
http://www.coocox.org/driver_comp/wifi_shield-c675.html?mc=9&sc=65
http://www.coocox.org/driver_comp/wifi_shield-c675.html?mc=9&sc=65
http://uk.farnell.com/arduino/a000058/board-wifi-shield-w-intg-antenna/dp/2212785
http://uk.farnell.com/arduino/a000058/board-wifi-shield-w-intg-antenna/dp/2212785
http://uk.farnell.com/arduino/a000058/board-wifi-shield-w-intg-antenna/dp/2212785
http://www.coocox.org/driver_comp/shield-ardunio-motor-shield-c660.html?mc=9&sc=46
http://www.coocox.org/driver_comp/shield-ardunio-motor-shield-c660.html?mc=9&sc=46
http://uk.farnell.com/arduino/a000079/l298-motor-control-arduino-shield/dp/2075346
http://uk.farnell.com/arduino/a000079/l298-motor-control-arduino-shield/dp/2075346
http://uk.farnell.com/arduino/a000079/l298-motor-control-arduino-shield/dp/2075346
http://www.coocox.org/driver/shield-mc9.html

22

Figure 4-3 Arduino
TM

 shield drivers list & “Refresh” button

4.2 ST-Adapter Mode

Preparation: A firmware to control the ArduinoTM shields and communicate with the Raspberry Pi

should be programmed to the STM32 before hand; it can be generated from the project built in

CoIDE, and be programmed with CoIDE, CoFlash, or ISP tool. The source code to control the

ArduinoTM shields are the same with those in the STM32/Standalone Mode, while the Protocol

Decode Layer code components (as shown in Figure 4-4) for communication with the Raspberry

Pi will be provided in CoIDE and this page.

The STM32 controls the ArduinoTM shields, and the Raspberry Pi works as the GUI or command

line console to send commands/data to and receive data from the STM32. This is an advanced

mode which extends and strengthens the automation control capability of the Raspberry Pi,

taking the advantage of STM32F103 NVIC (Nested Vectored Interrupt Controller), GPIOs, and

more peripherals like ADC and PWM.

23

Raspberry Pi
(GUI or command line console)

R
P

I c
o

n
n

e
ct

o
r

(I
2

C
/S

P
I/

U
A

R
T)

STM32

Shield Driver Layer

LCD
Driver

Motor
Driver

Sensor
Driver

Key
Driver

WiFi, ETH
Driver ...

CoX STM32 Library (HAL)

Hardware Layer

Protocol Decode Layer

Arduino form
-factor

com
patible interfaces

CMD DATA
EP

I e
xt

en
de

d
in

te
rf

ac
es

Arduino Shields

LCD Motor Sensor

Key Network ...

1 SPI, 1 I2C, 1
UART with flow
control, 2 pairs
of PWM (+-), 6
analog inputs, 1
CAN

1 SPI, 1 I2C, 4
PWM, 1 UART,
6 analog inputs

CooCox Shields

LCD Motor Sensor

Key Network ...

Figure 4-4 Block diagram of ST-Adapter Mode

4.2.1 Hardware Connections

The Raspberry Pi communicates with STM32 via the SPI/I2C/UART channels of the Raspberry Pi

connector, which are used as multiplex functions of the digital IOs. The Embedded Pi can be

powered with the connected Raspberry Pi.

24

Figure 4-5 Hardware connections of ST-Adapter Mode

4.2.2 Software Resources

The C++ source code to send commands/data to or receive data from the STM32, running in the

Raspberry Pi ARM11 SoC @700MHz, Debian “wheezy” OS with 1080P resolution, are provided in

CooCox Blog, bundling with the STM32 firmware and source code.

To develop applications in this mode using the ArduinoTM shields supported by CoIDE, users just

need to develop/replace the Protocol Decode Layer code and the C++ code to run in the

Raspberry Pi Debian system, following the instruction manuals which will be offered by CooCox

team later.

Table 4-2 ST-Adapter mode demos

Shield Demo description Blog link

ArduinoTM Motor

Shield

A demo for ultrasonic distance measuring, can detect

the geomagnetic field and measure the voltage of

sliding rheostat

Ultrasonic

Demo

AD Demo

TinkerKit Shield

Raspberry Pi can control motor, LED, or GPIO of STM32

with commands by invoking command parameters

already defined

For more demos and divers, please visit www.coocox.org/epi.html.

4.3 Raspberry Pi Mode

The Embedded Pi works as a hardware connection bridge between Raspberry Pi and ArduinoTM

http://www.coocox.org/blog/?p=141
http://www.coocox.org/blog/?p=141
http://www.coocox.org/blog/?p=165
http://www.coocox.org/epi.html

25

shields, allowing the Raspberry Pi to interface directly with existing ArduinoTM shields, having a

number of sensors & control to interact with external environment. It offers all the possibilities of

connecting digital and analog sensors using the common footprint of ArduinoTM but with the

power and capabilities of Raspberry Pi.

Raspberry Pi
(GUI or command line console)

R
P

I c
o

n
n

e
ct

o
r

(I
2

C
/S

P
I/

U
A

R
T)

CMD DATA

Embedded Pi

A
rd

u
in

o
 f

o
rm

-f
ac

to
r

co
m

p
at

ib
le

 in
te

rf
ac

e
s

Arduino Shields

LCD Motor Sensor

Key Network ...

Figure 4-6 Block diagram of Raspberry Pi Mode

26

4.3.1 Hardware Connections

Figure 4-7 Hardware connections of Raspberry Pi Mode

Note: The Embedded Pi Extended Interfaces are not connected with the pins of the Raspberry Pi

Connector.

4.3.2 Software Resources

ArduinoTM community has provided a great many drivers and application examples of the existing

ArduinoTM shields for Linux, as well as corresponding document. The open source library called

“arduPi” enables the drivers and application examples to run in the Raspberry Pi Debian system,

including most drivers of ArduinoTM shield peripherals, like GPIO, I2C, SPI, etc.

Download arduPi for Raspberry Pi:

Modified arduPi library compatible with the Embedded Pi

Table 4-3 Raspberry Pi mode demos

Shield Demo description Blog link

ArduinoTM Motor-Control

Shield

Raspberry Pi controls the rotation of the motors

Raspberry Pi controls the rotation of the motors,

and the rotation direction and speed can be

configured via GUI.

Ras-Pi Demo

TinkerKit Shield

Raspberry Pi controls the LEDs

Raspberry Pi controls the LCD via I2C

For more demos and divers, please visit www.coocox.org/epi.html.

http://www.coocox.org/Embedded_Pi/software_code/arduPi.tar.bz2
http://www.coocox.org/blog/?p=139
http://www.coocox.org/epi.html

27

5 Getting Started

To get started with the Embedded Pi in ST-Adapter mode and Raspberry Pi mode, refer to 4.2.2

and 4.3.2.

To get started with Embedded Pi in STM32 mode, an ArduinoTM shield, and CoIDE, you can follow

the steps below:

1. Launch CoIDE, and select “Create a New Project” from the Welcome window.

28

2. Specify project name and path, and click “Next”.

3. Stay the cursor on “Chip” to create the project based on the target chip, and click “Next”.

29

4. Select target chip “STM32F103RB” from the chip list.

5. After clicking “Finish”, CoIDE will create a project containing a main.c file for you, and show

the Repository window which contains all code components of STM32F103RB.

30

6. Select the driver component of your ArduinoTM shield from the “Drivers” tab, e.g. select

Shield -> DM163 Dot Matrix, associated components (xGPIO in this case) will be

automatically selected, and CoIDE will add the source code of the selected components to

your project.

31

7. Select View -> Help to open the Help window and view the related information of a selected

component.

32

8. In the “Peripherals” tab, select CoX.Embedded_PI.Config component to add the interface

configuration files to the project.

33

9. The Components view shows all selected components and the number of examples for each

component. Click DM163 Dot Matrix component and its Example window will popup. Click

“view” to view the content of the example file.

34

10. Click “add” to add the example file to your project, and click “Yes” to confirm adding.

CoIDE will add the DotMatrix_example.c file to the project, and the DotMatrix_example function

to the main function.

35

However, the DotMatrix_example.c file has 2 unsolved inclusions – xcore.h and xsysctl.h.

11. Select components xCORE and xSysCtl from the “Peripherals” tab.

36

12. Click the “Build” button or press F7 to compile and link the program.

13. Click the “Configuration” button to open the Configuration window.

37

14. Select the debug adapter you use in the “Debugger” tab, and close the Configuration

window to save your configurations.

15. Click the “Download” button to download code to flash.

38

16. To start debugging, click on the Debug icon or press Ctrl+F5.

17. If debugging is launched successfully, CoIDE will enter the debug mode.

39

18. Other debug windows can be added by simply selecting them from the View menu.

19. Use the debug functions like single stepping via the tool bar or debug menu.

40

20. Set breakpoints in the C code window or the Disassembly window.

41

6 Schematics

42

43

44

45

7 References

7.1 Cortex-M3

1. ARM documentation set for the ARM Cortex-M3 CPU processor cores

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m3/index.html

2. ARMv7-M Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403c/index.html

7.2 STM32

1. STM32F103RBT6 Datasheet

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/

CD00161566.pdf

2. STM32F10xxx Flash memory microcontrollers

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAM

MING_MANUAL/CD00283419.pdf

3. STM32F10xxx/20xxx/21xxx/L1xxxx Cortex-M3 programming manual

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAM

MING_MANUAL/CD00228163.pdf

4. RM0008: STM32F10xx Reference Manual

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/REFERENCE

_MANUAL/CD00171190.pdf

5. More resources

http://www.st.com/internet/mcu/product/164487.jsp

7.3 CooCox

1. CooCox Embedded Pi Page

http://www.coocox.org/epi.html

2. CooCox Forum

http://www.coocox.org/Forum/index.php

3. CooCox CoX

http://www.coocox.org/COX.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m3/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403c/index.html
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00161566.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00161566.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/CD00283419.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/CD00283419.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/CD00228163.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/CD00228163.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/REFERENCE_MANUAL/CD00171190.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/REFERENCE_MANUAL/CD00171190.pdf
http://www.st.com/internet/mcu/product/164487.jsp
http://www.coocox.org/epi.html
http://www.coocox.org/Forum/index.php
http://www.coocox.org/COX.html

46

4. CooCox CoIDE

http://www.coocox.org/CooCox_CoIDE.htm

7.4 Raspberry Pi

1. Raspberry Pi HomePage

http://www.raspberrypi.org/

2. Raspberry Pi order links

http://downloads.element14.com/raspberryPi1.html

3. FAQs

http://www.raspberrypi.org/faqs

4. Element14 Raspberry-Pi community

http://www.element14.com/community/groups/raspberry-pi

7.5 ArduinoTM

1. ArduinoTM HomePage

http://www.arduino.cc/

2. ArduinoTM Community

http://arduino.org/

3. ArduinoTM Shields

http://www.shieldlist.org/

http://www.coocox.org/CooCox_CoIDE.htm
http://www.raspberrypi.org/
http://downloads.element14.com/raspberryPi1.html
http://www.raspberrypi.org/faqs
http://www.element14.com/community/groups/raspberry-pi
http://www.arduino.cc/
http://arduino.org/
http://www.shieldlist.org/

	Embedded Pi User Manual
	Catalog
	1 Introduction
	2 Key Features
	3 Hardware Layout and Configuration
	3.1 Block Diagram
	3.2 ESD Precautions
	3.3 MCU
	3.4 Power
	3.4.1 Power Supply
	3.4.2 Power Pins

	3.5 ArduinoTM Form-factor Compatibility
	3.5.1 Power section
	3.5.2 Analog section
	3.5.3 ICSP/ SPI
	3.5.4 Digital section

	3.6 Embedded Pi Extended Interfaces
	3.6.1 Custom Section
	3.6.2 Analog Section
	3.6.3 Digital Section

	3.7 Raspberry Pi Connector
	3.8 Program the Embedded Pi
	3.8.1 ISP mode
	3.8.2 External Debugger Mode

	3.9 Button
	3.10 LED
	3.11 System Clock Source
	3.12 Jumper

	4 Operation Modes
	4.1 STM32/Standalone Mode
	4.1.1 Hardware connections
	4.1.2 Software Resources

	4.2 ST-Adapter Mode
	4.2.1 Hardware Connections
	4.2.2 Software Resources

	4.3 Raspberry Pi Mode
	4.3.1 Hardware Connections
	4.3.2 Software Resources

	5 Getting Started
	6 Schematics
	7 References
	7.1 Cortex-M3
	7.2 STM32
	7.3 CooCox
	7.4 Raspberry Pi
	7.5 ArduinoTM

