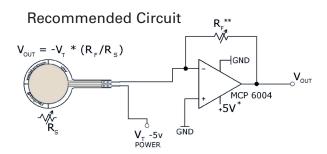

FlexiForce®

Standard Force & Load Sensors Model # A401

Physical Properties

Thickness 0.208 mm (0.008 in.)
Length 56.8 mm (2.24 in.)
Width 31.8 mm (1.25 in.)
Sensing Area 25.4 mm (1 in.) diameter
Connector 2-pin Male Square Pin
Substrate Polyester (ex: Mylar)
Pin Spacing 2.54 mm (0.1 in.)


Standard Force Ranges (as tested with circuit shown below)

Force Range:

0 - 25 lb. (110 N)

Force Range Adjustments

Measurement ranges of 0-1 lb and 0-7000 lb are achievable with the A401 sensor by utilizing the recommended circuitry. The force range can be extended by reducing the drive voltage, $V_{\rm T}$, or the resistance value of the feedback resistor, $R_{\rm F}$. Conversely, the sensitivity can be increased for measurement of lower forces by increasing $V_{\rm T}$ or $R_{\rm F}$.

- * Supply Voltages should be constant
- ** Reference Resistance R_F is 1kΩ to 100kΩ
- Sensor Resistance R_S at no load is >5MΩ
 Max recommended current is 2.5mA
- 4.5 4 3.5 5 lb Force Range 3 Vout (Volts) 2.5 2 1.5 1 100 lb Force Range 10 0 15 20 Force (Pounds) 40 45

Typical Performance

Linearity (Error) $< \pm 3\%$

Repeatability $< \pm 2.5\%$ of full scale Hysteresis < 4.5% of full scale

Drift < 5% per logarithmic time scale

Response Time < 5 µsec

Operating Temperature 15°F - 140°F (-9°C - 60°C)*

Evaluation Conditions

Line drawn from 0 to 50% load

Conditioned sensor, 80% of full force applied Conditioned sensor, 80% of full force applied

Constant load of 25 lb (111 N)

Impact load, output recorded on oscilloscope

Time required for the sensor to respond to an input force

^{*}Force reading change per degree of temperature change = ±0.2%/°F (0.36%/°C)