FEN LOGIC LTD.

Gertboard User Manual

Gert van Loo and Myra Vanlnwegen

Revision 1.0

The Gertboard is an add-on GPIO expansion board for the Raspberry Pi computer. It comes with a
large variety of components, including buttons, LEDs, A/D and D/A converters, a motor controller,
and an Atmel AVR microcontroller. There is a suite of test/example programs for the Gertboard,
written in C, which is freely available at www.element14.com/raspberrypi This manual explains both
how to set up the Gertboard for various control experiments and also explains at a high level how
the test code works.

Copyright 2012 by Fen Logic Ltd. All rights reserved.

Contents

GETtDOAIA OVETVIEW......eiiieiiiiieiieiiitet ettt sttt ettt ettt sae et et eanesa st e b sheesa e bt eaeenaesneennenees 4
Labels on the CIrCUit DOAId..........coiuiiiiiiiiiiiiiceieeectcet ettt ettt s 5
Location of the building blocks on the Gertboardc..cooeiiiiniiniiniiiiee e 7
JUMPEI'S ANA STEAPS -.evveenveeiieiiieeiteee ettt ettt ettt e sttt st st et e b e e bt e meessee et e easeenneeneens 8
GPIO PINS ettt et et e bt b et et et e et e e bt e sb e e shteeat e e b e e bt e bt e bt e eat e et e enbeebeen 8
SCREMALICS ...ttt ettt be e st st e bbbt e s bt s ae e sat e et e et e e sbeesaeesanesanesane 9
TESt PIOZIAIMS OVEIVIEWeiiutiiuiiitientiestte ettt et et et et tesbtesate et e e bt esbeesbeesutesatesabeeabeebeenbaesatesaeeenseenbeens 9

IMACTOS. c.. ettt sttt sttt ettt ettt st st et et sb et e b e e et esat et sh et sh e sa bt e ea e re e nnes 10

Buffered /O, LEDs, and pUShDULIONS.........ccoiuiiiiiiiiiiiiiieeeieeeitc ettt ettt et 11
PUSI DULLOIIS ...ttt ettt s et st et esn st sreemeenne 12
Locating the relevant sections of the Gertboardcocceviiriiniiiiiiniineccecen 12
Testing the PUSHDULIONSoo.eiiiiiiiiieie ettt st et 14
TeStiNG the LLEDS ...couuiiiiiiiiiiieie ettt sttt et ettt ettt bbbt e e 16
TESHINEZ /O .ottt sttt et e b e e bt e sbt e s atesabesabeebe e bt e nbeesaees 18

OPEN COlIECLOT DITVET....c..eiiiiiiiiiiiitete ettt ettt sttt et e sbe e st st st s ne e b enneenaees 19
Testing the 0pen COLECIOT AITVEIS ...cc..iiitiiiiiiieiie ettt st sttt e s 20

IMOLOT CONIOLIETeneiieniiriiete ettt st st e b et sa e et sreese e bt saeenne e 22
Testing the MOtOr CONLIOIIETcocuiiiiiiiiiiiiicececee ettt st et 23

Digital to Analogue and Analogue to Digital CONVEItErS.ccvueiiiriiiiriiiniieniienie e 25
Digital t0 analOgUE COMVETTETcc.eivtiiriieriierierie et ettt ettt et et e bt e satesatesne e bt eneesneesaees 25
Analogue to Digital CONVETTETcoiuiiiiiiiiiie ittt ettt st st e e b e 26
Testing the D/A and A/Doooooiiiiiiee ettt ettt st st 26

ATIMNEZA AEVICE ...ttt ettt ettt e b e bt e s bt e s et e et e e bt e bt e s bt e sbtesatesabesabe e bt e beenbeenaees 29
Programming the ATMEZa........c.cocuiiiiiiiiiniiieeeeeeecte ettt s 30

Arduino pins on the Gertboard...........ccoiieiieiiiiiiiieee ettt 30
A few SKetChes t0 Bt YOU OINEZveiuiiriieiieiiieie ettt ettt st sttt e e e e 31
IMIINICOIM .ttt sttt et ettt et s e st eab e et e bt e sme e eme e et e et e e bt enbeesanesanesane 36

COMDINE TESLS ..cuvinvieiieiiriieiesieetete ettt ettt ettt sttt st b e eee et st esnesae et enesreeseebesaeennenne 38
A/D and mOtOr CONLIOLIETooviiiiiiieieiterteet ettt ettt st st e 38
DIECOMRT ...ttt sttt sttt ettt st sh e et bt e n bt e aeen e aeenesreeneenre 39

FOr More INfOIMAtIONcoc.eiiiiiiiiiiiiiecceeet ettt ettt ettt st st s et e b 40

APPENAiX Az SCREIMALICS. ...ceuiiiuiiiiiiieett ettt sttt ettt e st e sbe e satesabesabe e bt e beenbeesaees 40

Gertboard Overview
Raspi

[OO000000000000 000

o stpngaea

[Oooco0o0o0][0o0][00000OD0O0OC0O0OD0O0CO0] [00] [000O0O O]
SPI

PWM /10 UART /0 =

D % | C
A M t = 3x . — (@)
MCPas0z otor k| Micro controller 21 lo
controller 12x 1 D o
A L6203 B ATmega o) o
D &Jouz[‘h(x244 8 8 8 © (@]
MCP3002 SPl/dbg GC) o)

[0co00 [0c00OOOO 000000000000 s

O0000O0 O0OO0O0O0O0OO0O0O0O0OO0O0 ULN2803a

Fig. 1: The principle, high level diagram of the Gertboard. In this view it is possible to see how
flexible Gertboard is, by being able to connect various parts of the board together.

Above is a principle diagram' of the Gertboard. Each circle in the diagram represents a header pin.
These headers give you access to a wide range of control combinations. As you begin experimenting
with the board, you will probably use the strapping area to connect various components on the
Gertboard to the Raspberry Pi. This flexibility even allows you, for example, to connect the motor
controller input pins to the Atmel ATmega device (an AVR microcontroller). The ATmega device has
a separate 6-pin header, which allows it to be programmed by the Raspberry Pi using the (Serial
Peripheral Interface) SPI bus.

The major building blocks are:

e 12x buffered I/O

e 3x push buttons

e 6x open collector drivers (50V, 0.5A)

e 48V, 4A motor controller

e 28-pin dual in line ATmega microcontroller

e 2-channel 8/10/12 bit Digital to Analogue converter
e 2-channel 10 bit Analogue to Digital converter

Each of these building blocks has a section below.

YA ‘principle diagram’ is a coarse overview of the most important parts of the system. It is not correct in all details. For that
you must look at the board schematics.

Labels on the circuit board

RNZ 19
Qje @ e © -
b7 E OOOOOU

ﬁ@@)ﬂ&

F1 Fuse max. 4A

Raspberry Pi
1/0 extension
11 March 2012
@ @] 3v3

Fig. 2: A photograph of the unpopulated Gertboard viewed from above, showing the silver
coloured holes and pads that eventually will be home to the components, as well as the
legends printed in white epoxy ink, and green solder resist coating.

- o~ ”m - wn [7-3 ~ «© -3 = - -

[T [T [T [[Ty [[Ty [T [T [T [T [T
N RlRl3lalidlidlidladlazlidldlal
[@o] |§|oooooooooooooooooooooool w03

"@eese “@eeee EeeeosIE
®®®®®®®®&®®®u

W] st
l.........

= 5[0 H[o N[N oN o] g
Eooooooooo ﬂ EI

o oo B 8[O H[e WA $18'8

] Hooo000000 0000000000
n@e0000000
& o [O[H o/H o[H o H0O00000000

]

oL
AD1
ADO| <[H[RPWR
DA1
DAD|
PBS
PB4
PB3
PB2
PB1
PBO
PD7
PD6
PD5|® @
PD4|® @
PDI|® @
PD2|@
PD1|®@
PDO|®
PC5|®@
[]
[]
[]
[]

U12

E!'J..........

EE

]
;..
0000000

x
[
=
o
3
=
S
i
[)
()
=
C]

ite
E..:
@Eé?@

PC4
PC3
PC2

® Raspberry Pi -
: 1/0 extension EEEEE555

Developed by
G.J. van Loo
Fen Logic Ltd.

PCI
pco|@|m|- 11 March 2012
TTJE L~ [® [@@]3vs

GND ug

2
@3

(X)
000 5V Vx

]
H

@m

Fig. 3: This image is a diagrammatic representation of the same photograph shown in Fig. 2
above. It was generated from the same files that were used to create the physical printed
circuit board. The blue elements in the diagram correspond to the white text and lines on the
photo and the red elements correspond to the silver pads and holes on the photo.

5

From now onwards in this guide, because it is much clearer to see, the diagram shown in Fig. x will
be used in preference to show you how to wire up the Gertboard, and to run the test and example
programs.

It is useful to be able to look at the bare board in order to see the labels (the white text in the photo
and the blue text in the diagram) on the board without the components getting in the way. These labels
provide essential information that is required in order to use Gertboard to its full potential. Almost all
of the components have labels, and more importantly, the pins in the headers have labels.

It isn’t necessary to be too concerned about the majority of the components; such as resistors and
capacitors (labelled with Cn and Rn, where n is some number). These are fairly simple devices that
don’t have a ‘right way round’ when they are assembled to the board. Diodes on the other hand, do
need assembling the right way round (covered later) - all the diodes are labelled D#; of these, the ones
that you will be interested in are D1 through D12, the light emitting diodes (LEDs; they are located
near the top of the board on the left). Pushbutton switches are labelled S1, S2, and S3 (they are
located just beneath the LEDs).

8 7 6 5 20 19 18 17 16 15 14 13 12 11

00 0o o060 o0o0000dgan
D D

O o oo ooboooooobad

1.2 3 4 1 2 3 4 5 6 7 8 910

Fig. 4: Two examples of ICs — an 8-pin and a 20-pin
dual-inline (DIL) package. In this package style, pin
1 is always identified as the first pin anticlockwise
from the package notch marking.

Integrated circuits, or ICs, are marked Un, so for example the I/O buffer chips are U3, U4, and U5
(these are near the middle of the board), while the Atmel microcontroller is U8 (this is below and to
the left of U3 to US). For the ICs, it is very important to know which is pin 1. If the IC is orientated so
that the end with the semi-circle notch is to the left, then pin 1 is the leftmost pin in the bottom row.
On the Gertboard, the location of pin 1 is always marked with a square pad. Pin numbers increase in
an anti-clockwise direction from there, as shown in the diagram. Knowing this means that the
schematics in Appendix A can always be related to the pinning on the ICs on the Gertboard.

Headers (the rows of pins sticking up from the board) will be a frequently used component on the
Gertboard. They are labelled Jn, so for example the header to the ribbon cable from the Raspberry Pi
is attached, is J1. Pin 1 on the headers is again marked with a square pad.

Power pins are marked with their voltage; for example there are a few positions marked 3V3. This is a
commonly used notation in electronics, and in this case it means 3.3 volts. A 5V power supply comes
onto the board via the GPIO connector, but the standard Gertboard assembly instructions do not
require that a header is installed to access this. If 5V is really required, and spare header pins are
available, a header can be soldered in location J24 in the lower right-hand corner of the board, and
then a 5V supply can be picked up from the lower pin (next to the text ‘5V’). Ground is marked with
GND or a L symbol.

Location of the building blocks on the Gertboard

| . - L_'_ﬂbl'
j;ra-a se088Re0 Ui i E

- sviol lololo
A

e
y
1]

'.
'n
-
b.
=
]

:l buffered I/O (+ switches and LEDs) Atmel ATmega chip
open collector driver |:I GPIO pins
: motor controller . - Ato D and D to A converters

Fig. 5: Photograph of an assembled Gertboard, with key functional blocks identified by
coloured boundary marking. This image serves as a good reference point for a board that has
been successfully assembled from bare board and components. Please note that the appearance
of some components can vary.

This annotated photo of a populated Gertboard shows where the building blocks (the major
capabilities of the board) are located. Some of the building blocks have two areas marked. For
example, the turquoise lines showing the Atmel ATmega chip not only surround the chip itself (on the
lower left) but also surround two header pins near the bottom of the board, in the middle. These pins
are connected to the Atmel chip and provide an easy way to interface the GPIO signals from the
Raspberry Pi (which are in the black box) with the Atmel chip.

The supply voltage (the voltage that acts as high or logical 1 on the board) is 3.3V. This is generated
from the 5V power pin in the J1 header (the one where the ribbon cable to the Raspberry Pi is
attached) by the components in the lower right corner of the board. The open collector and motor
controllers can handle higher voltages and have points to attach external power supplies.

Jumpers and straps

M —— T

Fig. 6: Image showing straps on the left hand side, and jumpers on the right. Straps connect two
parts of Gertboard together, whilst jumpers conveniently connect two adjacent pins on the same
header, together. The Gertboard Kit contains materials to produce single straps, although the
double strap also shown can also be useful.

To work properly, and get the maximum flexibility from the Gertboard a number of straps and
jumpers are essential. On the left of the photo are straps: they consist of wires that connect the small
metal connector and plastic housing, that slip over the header pins. They are meant for connecting
header pins that are further apart. It is sometimes useful to have straps that connect two or three
adjacent pins to the same number of adjacent pins elsewhere on the board. This is useful for example
when you want to use several LEDs. On the right of the above photo are jumpers: they are used to
connect two header pins that are right next to each other.

There is one jumper that should be in place at all times on the board: the one connecting pins 1 and 2
in header J7. This is the jumper that connects power from the power input pins to the rest of the board.
It is near the lower right corner of the board and is the jumper connecting the two pins below the text
3V3 in the photo below.

Fig. 7: Image showing header J7 with
translucent jumper in place. J7 is located just
above J8 (J7 legend is obscured in this image)

GPIO pins

The header J2, to the right of the text ‘Raspberry Pi’ on the board, provides access to all the I/O pins
on the GPIO header. There are 26 pins in J1 (the GPIO header which is connected to the Raspberry Pi
through the ribbon cable) but only 17 pins in J2: 3 of the pins in J1 are power and ground, and 6 are
DNC (do not connect). The labels on these pins, GPO, GP1, GP4, GP7, etc, may initially seem a little
arbitrary, as there are some obvious gaps, and the numbers do not correspond with the pin numbers on
the GPIO header J1. These labels are important however: they correspond with the signal names used

by the BCM2835, the processor on the Raspberry Pi. Signal GPIOn on the BCM2835 datasheet
corresponds to the pin labelled GPn on header J2 (so for example, GPIO17 on the data sheet can be
found at the pin labelled GP17 on the board). The numbers in the labels allow us to specify which
pins are required in the control programs to be run later.

Some of the GPIO pins have an alternate function that are made use of in some of the test programs.
These are shown in the table below. The rest are only used as general purpose input/output in the
code. On page 27 there is a description of how to gain access to the alternate functions of GPIO pins.

GPIOO SDAO (alt 0) C bus

GPIO1 SLCO (alt 0)

GPI1O7 SPI_CEI1_N (alt 0)

GPIOS SPI_CEOQ_N (alt 0)

GPIO9 SPI_MISO (alt 0) SPI bus
GPIO10 SPI_MOSI (alt 0)

GPIO11 SPI_SCLK (alt 0)

GPIO14 TXDO (alt 0)

GPIO15 RXDO (alt 0) UART
GPIO18 PWMO (alt 5) pulse width modulation

Table 1: Table showing the GPIO pins on the Gertboard, and what their alternative function is.

We mention the I°C bus use of GPIO0 and 1 above not because the I’C bus is used in the test
programs, but because each of them has a 18002 pull-up resistor on the Raspberry Pi, and this
prevents them from being used with the pushbuttons (see page 134).

Schematics

Whilst there are some circuit diagrams, or schematics, in the main body of the manual for some of the
building blocks of the board, they are simplifications of the actual circuits on the board. To truly
understand the board and the connections you need to make on it, you need to be a little familiar with
the schematics. Thus we have attached the full schematics at the end of this manual as Appendix A.
These pages are in landscape format. The page numbers A-1, A-2, etc, are in the lower left corner of
the pages (if you hold them so that the writing is the right way up).

Test programs overview

When you download the Gertboard test/example code (available at www.element14.com/raspberrypi),
you will have a file with a name something like gertboard_sw_10_07_12.tar.gz. Thisisa
compressed (hence the . gz suffix, which means it was compressed using the gzip algorithm) archive
(hence the . tar), where an archive is a collection of different files, all stored in a single file.

To retrieve the original software, put the file where you want your Gertboard software to end up on
your Raspberry Pi computer, then uncompress it by typing the following in one of the terminal
windows on your Pi (substituting the name of the actual file you have downloaded for the file name
we are using in this example):

gunzip gertboard_sw_10_07_12.tar.gz

Typing a directory command, 1s, should then show the newly uncompressed archive file
gertboard_sw_10_07_12.tar . So now, to extract the files from the archive, type

tar —-xvf gertboard_sw_10_07_12.tar

A new directory, gertboard_sw, will be created. In it is a set of C files and a makefile. C files are
software files, but they need to be compiled to run on the processor on your system. In the case of
Raspberry Pi, this is an ARM11. To compile all the code to run on Raspberry Pi, first change
directory to gertboard_sw by typing:

cd gertboard_sw
And then in that directory, type:
make all

Each building block has at least one test program that goes with it. Currently the test programs are
written in C; but they’ll be translated into Python in the near future. Each test program is compiled
from two or more C files. The file gb_common . ¢ (which has an associated header file
gb_common . h) contains code used by all of the building blocks on the board. Each test has a C file
that contains code specific to that test (thus you will find main here). Some of the tests use a special
interface (for example the SPI bus), and these tests have an additional C file that provides code
specific to that interface (these files are gb_spi . c for the SPI bus and gb_ pwm for the pulse width
modulator).

In each of the sections about the individual building blocks, the code specific to the tests for that block
is explained. Since all of the tests share the code in gb_common . ¢, an overview of that code will be
given here. In order to use the Gertboard via the GPIO, the test code first needs to call setup_io.
This function allocates various arrays and then calls mmap to associate the arrays with the devices that
it wants to control, such as the GPIO, SPI bus, PWM (pulse width modulator) etc. The result of this is
that it writes to these arrays control the devices or sends data to them, and reads from these arrays get
status bits or data from the devices. At the end of a test program, restore_io should be called,
which undoes the memory map and frees the allocated memory.

Macros
In gb_common.h, gb_spi.h, and gb_pwm.h there are a number of macros that give a more
intuitive name to various parts of the arrays that have been mapped. These macros are used to do
everything from setting whether a GPIO is used as input or output to controlling the clock speed of
the pulse width modulator. In the chart below is a summary of the purpose of the more commonly
used macros and give the page number on which its use is explained in more detail. The T column
below gives the ‘type’ of the macro. This shows how the macro is used. ‘E’ means that the command
is executed, as in:

INP_GPIO(17);

‘W’ means that that the command is written to (assigned), as in:
GPIO_PULL = 2;

10

‘R’ means that that the command is read from, as in:
data = GPIO_INO;

Macro name T Explanation Page no.
INP_GPIO(n) E activates GPIO pin number n (for input) 11
OUT_GPIO (n) E used after above, sets pin n for output 11
SET_GPIO_ALT(n, a) | E | used after INP_GP1IO, select alternate function for pin 24
GPIO_PULL w set pull code 16
GPIO_PULLCCLKO w select which pins pull code is applied to 16
GPIO_INO R get input values 16
GPIO_SETO W select which pins are set high 17
GPIO_CLRO w select which pins are set low 17

Table 2: Commonly used macros, their purpose, type and location within this manual.

The macro INP_GPIO (n) must be called for a pin number n to allow this pin to be used. By default
its mode is set up as an input. If it is required that the pin is used for an output, OUT_GPIO (n) must
be called after INP_GPIO (n).

Buffered I/0, LEDs, and pushbuttons

There are 12 pins which can be used as input or output ports. Each can be set to behave either as an
input or an output, using a jumper. Note that the terms ‘input’ and ‘output’ here are always with
respect to the Raspberry Pi: in input mode, the pin inputs data to the Pi; in output mode it acts as
output from the Pi. It is important to keep this in mind as the Gertboard is set up: an output from the
Gertboard is an input to the Raspberry Pi, and so the ‘input’ jumper must be installed to implement
this.

74xx244 :| output

RaépiO é) I (5
Cpm T Y700
RN

Fig. 8: The circuit diagram for I/0O ports 4-12

The triangles symbols in the diagram above represent buffers. In order to make the port function as an
input to the Raspberry Pi you install the ‘input’ jumper: then the data flows from the ‘I/O’ point to the
‘Raspi’ point. To make the port function as an output, the ‘output’ jumper must be installed: then the
data flows from the ‘Raspi’ point to the ‘I/O’ point. If both jumpers are installed, it won’t harm the
board, but the port won’t do anything sensible.

11

In both the input and output mode the LED will indicate what the logic level is on the ‘I/O’ pin. The
LED will be on when the level is high and it will be off when the level is low. There is a third option
for using this port: if neither the input nor output jumper is placed the I/O pin can be used as a simple
‘logic’ detector. The I/O pin can be connected to some other logic point (i.e. one that is either at OV or
3.3V) and use the LED to check if the connect point is seen as high or low.

Depending on the type of 74xx244 buffer chosen, the LED could behave randomly if the port is not
driven properly. In that case it may easily switch state, switching on or off with the smallest of
electronic changes, for example, when the board is simply touched.

There is a series resistor between the input buffer and the GPIO port. This is to protect the BCM2835
(the processor on the Raspberry Pi) in case the user programs the GPIO as output and also leaves the
‘input’ jumper in place. The BCM2835 input is a high impedance input and thus even a 10K series
resistor will not produce a noticeable change in behaviour when it is used as input.

Push buttons
The Gertboard has three push buttons; these are connected to ports 1, 2, and 3. Thus the first three /O
ports look like this:

RaspiO | J)
input |: 74xx244 :| output
1k 1k-10k ? ol/0
I

l "

Fig. 9: Circuit diagram showing one of the three
push buttons I/Os. There is a circuit like this for
ports 1 to 3.

In order to use a push button, the ‘input’ jumper must not be installed, even if the intention is to use
this as an input to the Raspberry Pi. If it is installed, the output of the lower buffer prevents the
pushbutton from working properly. To make clear what state each button is in, the output jumper can
be installed, and then the LED will now show the button state (LED on means button up, LED off
means button down). To use the push buttons, a pull-up must be set on the Raspberry Pi GPIO pins
used (described below, page 16) so that they are read as high (logical 1) when the buttons are not
pressed.

Locating the relevant sections of the Gertboard

In the building blocks location diagram on page 7, the components implementing the buffered I/O are
outlined in red. The ICs containing the buffers are U3, U4, and U5 near the centre of the board. The
LEDs (the round translucent red plastic devices) are labelled D1 to D12; D1 is driven by port 1, D2 by
port 2, etc. The pushbutton switches (the silver rectangular devices with circular depressions in the
middle) are labelled S1 to S3; S1 is connected to port 1 and so on. The long thin yellow components
with multiple pins, are resistor arrays.

12

The pins corresponding to ‘Raspi’ in the circuit diagrams above are B1 to B12 on the J3 header above
the words ‘Raspberry Pi’ on the board (B1 to B3 correspond to the ‘Raspi’ points on the second
circuit diagram with the pushbutton, and B4 to B12 correspond to the ‘Raspi’ points on the first
circuit diagram). They are called ‘Raspi’ because these are the ones that should be connected to the
pins in header J2, which are directly connected to the pins in J1, and which are then finally connected
via the ribbon cable to the Raspberry Pi. The pins corresponding to the ‘I/O’ point on the right of the
circuit diagrams above are BUF1 to BUF12 in the (unlabeled) single row header at the top of the
Gertboard.

On the Gertboard schematic, I/O buffers are on page A-2. The buffer chips U3, U4, and US are clearly
labelled. It should be apparent that ports 1 to 4 are handled by chip U3, ports 5 to 8 by chip U4, and
ports 9 to 12 by chip U5. The ‘Raspi’ points in the circuit diagrams above are shown as the signals
BUF_1 to BUF_12 on the left side of the page, and the ‘I/O’ points are BUF1 to BUF12 to the right of
the buffer chips. The input jumper locations are the blue rectangles labelled P1, P3, P5, P7, etc to the
left of the buffer chips, and the output jumper locations are the blue rectangles labelled P2, P4, P6, PS8,
etc, to the right of the buffer chips. The pushbutton switches S1, S2, and S3 are shown separately, on
the right side of the page near the bottom.

The buffered I/O ports can be used with (almost) any of the GPIO pins; they just have to be connected
up using the straps. So for example, if you want to use port 1 with GPIO17 a strap is placed between
the B1 pin in J3 and the GP17 pin in J2. Beware that the push buttons cannot be used with GPIO0 or
GPIO1 (GPO and GP1 in header J2 on the board) as those two pins have a 18002 pull-up resistor on
the Raspberry Pi. When the button is pressed the voltage on the input will be

10004

. X
33V 100042 + 18000

=1.2V

This is not an I/O voltage which can be reliably seen as low.

The output and input jumper locations are above and below the U3, U4, and US5 buffer chips. The
‘input’ jumpers need to be placed on the headers below the chips (shown on the board with the ‘in’
text; they are separated from the chip they go with by a yellow resistor array), and the ‘output’
jumpers need to be placed on the headers above the chips (with the ‘out’ text). If viewed closely (it is
clearer on the bare board), it is possible to see that each row of 8 header pins above and below the
buffer chips is divided up into 4 pairs of pins. The pairs on U3 are labelled B1 to B4, the ones on U4
are B5 to B8, and the ones on U5 are B9 to B12. The B1 pins are for port 1, B2 for port 2, etc.

To use port n as an input (but not when using the pushbutton, if n is 1, 2, or 3), a jumper is installed
over the pair of pins in Bz in the row marked ‘in’ (below the appropriate buffer chip). To use port n as
an output, a jumper is installed over the pair of pins in Bz in the row marked ‘out’ (above the
appropriate buffer chip).

13

Fig. 10: Example of port configuration where ports 1
to 3 are set to be outputs and ports 10 and 11 are set
to be inputs.

As a concrete example, in the picture above, ports 1, 2, and 3 are configured for output (because of the
jumpers across B1, B2, and B3 on the ‘out’ side of chip U3). Ports 10 and 11 are configured for input
(because of the jumpers across B10 and B11 on the ‘in’ side of US5).

In the test programs, the required connections are printed out before starting the tests. The input and
output jumpers are referred to in the following way: U3-out-B1 means that there is a jumper across
the B1 pins on the ‘out’ side of the U3 buffer chip. So the 5 jumpers in the picture above would be
referred to as U3-out-B1, U3-out-B2, U3-out-B3, U5-in-B10, and U5-in-B11.

Testing the pushbuttons

The test program for the pushbutton switches is called but tons. To run this test, the Gertboard must
be set up as in the image below. There are straps connecting pins B1, B2, and B3 in header J3 to pins
GP25, GP24, and GP23 in header J2 (respectively). Thus GPIO25 will read the leftmost pushbutton,
GPI0O24 will read the middle one, and GPIO23 will read the rightmost pushbutton. The jumpers on
the ‘out’ area of U3 (U3-out-B1, U3-out-B2, U3-out-B3) are optional: if they are installed, the
leftmost 3 LEDs will light up to indicate the state of the switches.

14

EhEdcacnams

=

M

= e
- g
- < L
il
=t e

o
=
=

14a

at

Raspber:
1/0 extension
11 March 2012

(o c]3v3

Developed by
2.J. van Loo
LS.

L

Fig. 11: Whilst the image above is clear, it isn’t very good at showing exactly how the straps are
connected, and between which pins on the board.

T &2 22 g g = g 2
3v3 aJ.gJ.aJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ. L 2 2 2
IEI-|§|ooooooooooooooooooooooolm, Py PY
"@eee® — W@eeee® @ *
Y@ QOO0 DOOO D m Leeeel
. g o/ \0/ 0/ 0/ \a/ 0/ @/ @/ \0/ \@ v
00O/)| 1T & Iiil“ =
04110 80 0@ @ 3 XYY YYYYY N
e e
P i , @000eeee "
RN7
Pt r!ooo ot as IOOOOOOQQN5 .
e oo e 00 EE——m eH o
PRI oooooooooo““ °
PBO u10 o
PD7 meee s | C“’EEM °
PD6 EEy 9 NOOOOOOGOOEG ©000000000 °
PD5 (] ® o WNE0000OOO 5 :
P4 of |01, Hemememe
PD3 123 @ [] Jn Bl B2 in B3 B4 H0O000O0O0OOO)
PD2 o |ofo|® w@eeecee®)
DI W Emel |0 000000000 HOE OO
oo el [O ARG EREBEEE P TP ®
PC5 Cl7R24 @ O[N| ||| ST 5388 5= m
PC4 ([@ct5 C16 2 222 5 2
PC3 zgZe |@) (® mm]ggJ O
iesl Thie| |o Ry r BOBEse s oot ey B e ST
PC1 £23@| (@ 1/0 extension EEEE5E55555555858888
PCO ‘plg 2350 ® 11 March 2012 000000000 i
Jolm mo|® - ¥ [e0]3vs |ooooooooo 5v Vx fdm

Fig. 12: This type of diagram is much more effective at showing how straps connect pins

together on the board, so from now onwards, we will use these type of diagrams to show wiring
arrangements.

15

In the diagram, black circles show which pins are being connected, and black lines between two pins
indicate that jumpers (if they are adjacent) or straps (if they are further apart) are used to connect
them.

The code specific to the buttons testis buttons.c. In the main routine, the connections
required for this test are firstly printed to the terminal (a text description of the wiring diagram above).
When the user verifies that the connections are correct, setup_1io is called (described on page 10)
to get everything ready.

setup_gpio is then called, which gets GPIO pins 1 to 3 ready to be used as pushbutton inputs. It
does this by first using the macro INP_GPIO (n) (where n is the GPIO pin number) to select these 3
pins for input.

Then pins are required to be pulled high: the buttons work by dropping the voltage down to OV when
the button is pressed, so it needs to be high when the button is not pressed. This is done by setting
GPIO_PULL to 2, the code for pull-up. Should it ever be required, the code for pull-down is 1. The
code for no pull is 0; this will allows this pin to be used for output after it has been used as a
pushbutton input. To apply this code to the desired pins, set GPTO_PULLCCLKO = 0X03800000.
This hexadecimal number has bits 23, 24, and 25 set to 1 and all the rest set to 0. This means that the
pull code is applied to GPIO pins 23, 24, and 25. A short_wait allows time for this to take effect,
and then GPIO_PULL and GPIO_PULLCLKO are set back to 0.

Back in the main routine, a loop is entered in which the button states are read (using macro
GPIO_INO), grabbing bits 23, 24, and 25 using a shift and mask logical operations, and, if the button
state is different from before, it is printed out in binary: up (high) is printed as ‘1’ and down (low) is
printed as ‘0’. This loop executes until a sufficient number of button state changes have occurred.

After the loop, unpull_pins is called, which undoes the pull-up on the pins, then call
restore_1ioin gb_common. c to clean up.

Testing the LEDs

The test program for the LEDs is called 1eds. To set up the Gertboard to run this test, see the wiring
diagram below. Every 1/O port is connected up as an output, so all the ‘out’ jumpers (those above the
buffer chips) are installed. Straps are used to connect the following (where all the ‘GP’ pins are in
header J2 and all the ‘B’ pins are in header J3): GP25 to B1, GP24 to B2, GP23 to B3, GP22 to B4,
GP21 to BS, GP18 to B6, GP17 to B7, GP11 to B8, GP10 to B9, GP9 to B10, GPS8 to B11, and GP7
to B12. In other words, the leftmost 12 ‘GP’ pins are connected to the ‘B’ pins, except that GP14 and
GP15 are missed out: they are already set to UART mode by Linux, so it’s best if they are not
touched.

If there aren’t enough jumpers or straps to wire these connections all up at once, don’t worry. Just
wire up as many as possible, and run the test. Once it’s finished the straps/jumpers can be moved and
the test can be run again. Nothing bad will happen if a pin is written to that has nothing connected to
it.

16

-— o~) <+ o © ~ o o 2 = o < m +
ws S.S5.5.5.5.5.8.8,8,5,5,5, L 2 8 8
[0e] meeoeoec0000000000000000 ,,/g ¢ o j PY PY
"@eeee "@eee® ™ gieses s — ‘9
Fi Fuse max. 4A
4 = (!) (!) (!) (!) (g) (!) (!) (!) (!) (!) (!)Z)I_I o0000”
-@mmll III IssII Iagﬂ 5
o0 g
20000 Sﬂ 3 ooooooooooLcﬂ—;iI: S
e ::::::: vo
o0 Us
ese | Cadadeises Gesssseer, s SSseees B
-_ H
000c0cccce HoEoEONeox M :
uto N
miee HOOO® ”3}’ CWEEM ecocjeoe ©
rosl@ @ Mk o ° HO000000000 0000000000 o000 ©
5@ e He] o |e RN* us ::::::: :
oo 00 o |ox
i e eese |o JE” Bzmaa me H000000000 go0cece ©
2le @ |i||i_|. °® 53 RNG :I[ImID 1 o
PD1|® @ i ® o .
oo o muel (o™ : 3V3
Pesl@ @ CURA@ |@[H| (M| g apagatag
PC4(® @ K @C15 C16 Bk
PC3|® @ 2350 ® i c7
rcj@® s-ce| [e Raspberry Pi Iiil1 m |_|
PCl|®@ @ £2s0 ® I1/1()Mextehnz-*éi(cjw{\2 EE858555555858888
PolOfM]- s 235O |@ arc 000000000000
mICL DS OO B 0000000000000 5VVx

Fig. 13: The wiring diagram necessary to run the Gertboard LED test program, leds

The test code in 1eds. c first calls setup_io to get everything ready. Then setup_gpio is
called, which prepares 12 GPIO pins to be used as outputs (as all 12 I/O ports will require
controlling). All of the GPIO signals except GPIO 0, 1, 4, 14, and 15 are used. To set them up for
output, first call INP_GPIO (n) (where n is the GPIO pin number) for each of the 12 pins to activate
them. This also sets them up for input, so then call OUT_GPIO (n) afterwards for each of the 12 pins
to put them in output mode.

LEDs are switched on using the macro GPTO_SETO: the value assigned to GPTO_SETO0 will set
GPIO pin 7 to high if bit # is set in that value. When a GPIO pin is set high, the I/O port connected to
that pin goes high, and the LED for that port turns on. Thus, the line of code “GPIO_SETO0 =
0x180; " will set GPIO pins 7 and 8 high (since bits 7 and 8 are set in the hexadecimal number
0x180). Given the wiring setup above, ports 11 and 12 will go high (because these are the ports
connected to GP7 and GP8), and thus the rightmost two LEDs will turn on.

To turn LEDs off, use macro GPIO_CLRO. This works in a similar way to GPTIO_SETO, but here the
bits that are high in the value assigned to GPTO_CLRO specify which GPIO ports will be set low (and
hence which ports will be set low, and which LEDs will turn off). So for example, given the wiring
above, the command “GPTO_CLRO = 0x100;” will set GPIOS8 pin low, and thus turn off the LED
for port 11, which is the port connected to GPS. (In 1eds . c the LEDs are always all turned off
together, but they don’t have to be used this way.)

The test program flashes the LEDs in three patterns. The patterns are specified by a collection of
global arrays given values using an initializer. The number in each of the arrays says which LEDs will

17

be turned on at that point in the pattern — so, pattern value is submitted sequentially to produce the
changing pattern, switching all the LEDs off between successive pattern values. Each pattern is run
through twice. The first pattern lights the LEDs one at a time in sequence, left to right. The second
pattern does the same but when it reaches the rightmost LED, it then reverses direction and lights
them in sequence right to left. The third pattern starts at the left end and at each step switches on one
more LED until they are all lit up, then starting at the left it switches them off one by one until they
are all off.

Finally, the test program switches off all the LEDs and then finally calls restore_io to clean up all
the LEDs to a predictable final state.

Testing 1/0

Our two examples so far have only used the ports to access the pushbuttons and LEDs. The next
example, called butled (for BUTton LED) will show one of the ports serving just as an input port.
The idea is that one port (along with its button) is used to generate a signal, and software then sends
that signal to another port which it is used as just an input. We read both ports in and print them on the
screen.

O N

e A = B2 £
3v3 aJ.aJ.aJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ. L 2 2 2
oo ‘meeooeec000 ooooooooooooolm P : PY PY
"@eeee ™ OOCOEH L :
s dOOOORO OO B m LA AT
o I A o ™ 'so00®|”
Ao -Eﬂmdl Tsﬁll TSSl TEEM@E TR
cn
04110 8,10 00 @ ° YYYYYYYYY) e T
PBS ' ——
PO O =m0 e RN7 0000000 -
pB3..EE... I:cg B1 azo ..N5 ococeoe N
i XYY = E[0 0o N[O O[H 0] snol: eeeeoce ©
oB1 0000000000 ED[I]EDED oeoe0ee ©
PBO [luo Us}) Cwliil ooocece ©
o07 X oececjece ©
PD6 CE N el L XX XXX XXX 0000000000 eococece ©
rs@e|-me] o (0 ru@ooee000® s oceceee O
rio o e O (®x . [Nememomeo oeeeeoe ©
PDI@ ® (@ @2 ® ()] Bl B2 B3 B4 HO00000000 go0000e ©
PD2|@ @ o |0 N@Ee000000
roijo o M EEe ® il = i ”
meecooe
rooj@ @ B mm| o '™ Nn¢nw3V3
pcsl@ @ “icTrigl |opm) |m| LR EEEEEE
PC4@® @ @ @5 C16 §§2 -
PC3|® @ 2550 o . o E[R2 c7
pci@® gZce| |@ Raspberry Pi 199 (XX LIy [-m m |_|
PCl|®@ @ £sz0 ® |/0 extension ggggggggggg%%%
PCO]’_JE oo 2250 ® 11 March 2012 0000000000
oelm mel®L~ W [90]3vs 0000000000 5VVx

Fig. 14: The wiring diagram for test program butled which detects a button press, and then
display that button state on the screen. This is to test all the I/O on the Gertboard.

The wiring for this test is shown above. Pin GPIO23 controls I/O port 3, and GPIO22 controls I/O
port 6, so GP23 in header J2 is connected to pin B3 in header J3, and GP22 is connected to B6. Now,
for the interesting part. The pushbutton on port 3 is going to be used here, but the LED for port 3
should not be used, so therefore the output jumper for port 3 is not installed (which would be placed at
U3-out-B3).

18

Looking at the schematic on page A-2, it is clear that the output buffer for port 3 goes to pin 14 of
buffer chip U3. This is connected to the U3-out-B3 header pin just above pin 14 on the chip (it is pin
1 of U3-out-B3; this is clear from the schematic and from the fact that this pin has a square pad on the
bare circuit board), so that pin is connected to the BUF6 pin at the top of the board. This allows the
switch to generate a signal which is then sent to port 6. A jumper is installed across U4-in-B6 to allow
that signal to be input from the board. The value of the switch from port 3 is also read in, and these
two should be the same (most of the time).

In butled.c weuse INP_GPIO to set GPI022 and GPIO23 to input and GPTO_PULL and
GPIO_PULLCLKO to set the pull-up on GPIO23. This is described in more detail on page 16, in the
buttons test. Then the GPIO values are repeatedly read in, and the binary values of GP1022 and
GPIO23 are printed out, if they have changed since the last cycle. So if ‘01° is displayed on the
monitor, it can be deduced that GPIO23 is low and GPIO22 is high. (Note that the LED for port 6,
labelled D6, should be off when switch 3 is pressed and on when switch 3 is up.)

Now, if the values for GPIO22 and GPIO23 are always the same, ‘00’ and ‘11’ will only ever be
printed out. But if the test is started with button 3 up (so ‘11’ is displayed), and then the button is
pushed down, occasionally ‘01’ might be seen, followed very quickly by ‘00’. The reason for this
differs between the Python and C implementations. In the C version, both values are read at the same
time, and the signal from the push button (which is connected to GPIO23) takes a small amount of
time to propagate through the buffers to get to GPIO22.

It may even be possible to get one reading in after GPIO23 has changed, but insufficient time has
passed for GPIO22 to change state and follow it! In the Python code, the read of GPIO22 occurs
before the read of GPIO23 (the button). Thus if the button is pressed or released between these two
reads, the new value will be read in for the button (GP1023), but the new value of the other input
(GP1022) won’t change until the next time through the while loop.

Open Collector Driver

The Gertboard uses six ports of a ULN2803a to provide open collector drivers. These are used to turn
off and on devices, especially those that need a different voltage or higher current than that available
on the Gertboard and are powered by an external power supply. The ULN2803a can withstand up to
50V and drive 5S00mA on each of its ports. Each driver has an integrated protection diode (the

uppermost diode in the circuit diagram below).
r@ common
OOouT
RaspiO—
A

—

1<

Fig. 15: Circuit diagram of each open collector driver.

19

The ‘common’ pin is, as the name states, common for all open collector drivers. It is not connected to
any other point on the Gertboard. As with all devices the control for the open collector drivers (the
‘Raspi’ point) can also be connected to the ATmega controller to, for example, drive relays or motors.

The open collector drivers are in the schematics on page A-3.

On the Gertboard building block diagram on page 7, the area containing the components for the open
collector drivers are outlined in yellow. The pins corresponding to ‘Raspi’ in the diagram above are
RLY1 to RLY6 pins in the J4 header; the pins corresponding to ‘common’ are the ones marked
RPWR in the headers on the right edge of the board; and the pins corresponding to ‘OUT’ are the
RLY1 to RLY6 pins in the headers J12 to J17. How these are then used is demonstrated by the test
wiring and code examples.

Testing the open collector drivers

The program ocol (for open collector) allows the functional testing of the open collector drivers. A
simple mechanism was required to switch the driver on and off, so we created a little circuit (see
diagram below) consisting of two large LEDs and a resistor in series. Once connected, the forward
voltage across each of these LEDs is a little above 3V, so we used a 9V battery as a power supply, and
calculated a series resistance of around about 90Q2 to set a suitable current flow through the LEDs.

Since this small test circuit will not be used again, it can simply be hand soldered together off-board.
Remember that LEDs are diodes, and have to be connected the right way round. The small ‘flat’ in the
LED moulding denotes the ‘cathode’ or negative pin. If you think of the LED symbol in the circuit
diagram below as an arrow, it is pointing in the direction of the current flow, from + to -, or from
anode to cathode.

To turn the circuit off and on using the open collector driver (say you want to use driver 1), first check
that it works with the power supply described above. Then, leave the positive side of your circuit
attached to the positive terminal of the power supply, but in addition connect it to one of the RPWR
pins in the headers on the right edge of the board (they are all connected together). Disconnect the
ground side of the circuit from the power supply and connect it instead to RLY1 in header J12 on the
right of the board. Attach the ground terminal of the power supply to any GND or L pin on the board.
Now, we need a signal to control the driver. For the ocol test we are using GPIO4 to control the
open collector (you could of course use any logic signal), so connect GP4 in header J2 to RLY1 in J4.
(To test a different driver, say n, with the ocol test, connect the ground side of the circuit up to
RLY# in the headers on the right of the board and connect GP4 in header J2 to RLY# in J4.)

Now, when RLY1 in J4 is set low, the circuit doesn’t receive any power and thus is off. When RLY1
in J4 goes high, the open collector driver uses transistors to connect the ‘ground’ side of the circuit to
the ground on the board, and since this is connected to the ground terminal on the power supply, the
power supply ends up powering the circuit: it is just turned off and on by the open collector driver.

20

AR b I] ° “‘ = @2 *
3V3 mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ.mJ. L 2 2 2
IEI- ooooooooooooooooooooooomm, PY P
@....) RN, .. R@e e oo <O Ml 19
GND 3 3 . . 3 ‘ % F1 Fuse max. 4A
m,z.sg<><><><><><><><><><>< pALAALY ’
ADO| @[] IEI 20 1 33| Ifil[miJ CONCIER gﬁRPWR .
DA© 00000 YYYYYYYYY) l
me ol I Sl
PBS XXX XXX /*
PAOOEmeOO S ™ ‘Hecececeee 0] - % L
PBS..m B Booutps B4 _N5 [/; =
rizjo o/ L6 0 0@ mseneNnene & cm@ o o 2 :
peij0 @ oooooooooo* 0 °
P00 L v s : : |
PD7|@ ®
rsloe MEkn of ¢ HOOOOOOOGOG ©000000000 o ° /
PD5|® @| 1] o ¢ mnm@0000000 [o
PD4|® @ (] ® xi 1 (M Ol o[l o[H 0] [(]
PD3|® @ 423 @ (] |i| Bl B2in B3 B4 [[] your crcuit
ro2l@ ® o |
PDI[@ @ Elilo ° .ﬂoooooooo 0 4 goes here .
PDO|® @ Ri‘cln!ml. Ot 2RI RRE2 3 your powel
PC5® ® o |om |m source
PC4{® @ @ @®Ci5 C6 goes here
PC3|® ® 220 ®
pc2l® @ gz2c@| |® Raspberry Pi (XX
PCl|® @ St ® 1/0 extension && &
PCO|@| M} g 533: : 11 March 2012
ogom meloLo N [ee]3s q

Fig.16: Wiring diagram showing how to connect Gertboard to test the open collector drivers. It
also shows the small test power supply made up of two LEDs in series, a 90 € resistor and a 9V
battery.

You may wonder why you need to connect the positive terminal of the power supply to the open
collector driver (via the RPWR pin). The reason for this is that if the circuit happens to contain an
component that has electrical inductance, for example a motor or a relay, when the power is turned off
this inductance causes the voltage on RLY# pin to quickly rise to a higher voltage than the positive
terminal of the power supply, dropping quickly afterwards. The chip itself has an internal diode
connecting the RLY#n pin to the RPWR. This allows current to flow to the top (positive side) of your
circuit, allowing the energy to dissipate, and preventing damage.

The ocol test is very simple. First, it prints out the connections required on the board (and with your
external circuit and power supply), and then it calls setup_io to get the GPIO interface ready to use
and setup_gpio to set pin GPIO4 to be used as an output (using the commands INP_GPIO (4) ;
OUT_GPIO (4) ; as described on page 11). Then in it uses GPIO_SETO0 and GPIO_CLRO
(described on page 17) to set GPIO4 high then low 10 times. Note: the test asks which driver should
be tested, but it only uses this information to print out the connections that need to be made.
Otherwise it ignores your response.

21

Motor Controller
The Gertboard has a position for a L6203 (Miniwatt package) motor controller. The motor controller
is for brushed DC motors.

The controller has two input pins, A and B (labelled MOTA and MOTB on the board). The pins can
be driven high or low, and the motor responds according to the table below. The speed of the motor
can be controlled by applying a pulse-width-modulated (PWM) signal to either the A or B pin.

A | B Motor action
0 |0 no movement
0 1 rotate one way
1 0 rotate opposite way from above
1 1 no movement

Table 3: Truth table showing the behaviour of the motor
controller under different logic combinations.

The motor controller IC has internal temperature protection. Current protection is provided by a fuse
on the Gertboard.

The motor controller is in the schematics on page A-4.

On the Gertboard building block diagram on page 7, the area containing the components for the motor
controller are outlined in purple. The motor controller and screw terminals are near the top of the
board, and there are two pins for the control signals in a small header just above GP4 and GP1 in
header J2. The MOTA and MOTB pins just above header J2 are the inputs to the motor controller —
these are digital signals (low and high). The screw terminals at the top of the board labelled MOTA
and MOTB are the outputs of the motor controller: they actually provide the power to the motor. The
motor will probably need more power (a higher voltage or current) than that provided by the
Gertboard. The screw terminals at the top labelled MOT+ and L allow the connection of an external
power supply to provide this: the motor controller directs this power to the MOTA and MOTB screw
terminals, modulating it according to the MOTA and MOTB inputs near J2.

If you just want to turn the motor off and on, in either direction, this is achieved by simply choosing
two of the GPIO pins and installing straps between them to the MOTA and MOTB motor controller
inputs. Then, to control the motor, the pins are set high or low per the table 3 above. To control the
speed of the motor however, pulse width modulation (PWM) is required. This is a device that outputs
a square wave that flips back and forth from on to off very rapidly, as in the diagram below:

1
0

Fig. 17: An example of a PWM output. In this example the output is
neither on nor off all the time. In fact, here it is on for 50% of the
time, and is therefore said to have a duty cycle of 50%.

22

With a PWM, you can control the amount of time the output is high vs. when it is low. This is called
the duty cycle and is expressed as a percentage. The diagram above shows a 50% duty cycle; the one
below is 25%.

1

0
Fig. 18: In this PWM example, the duty cycle is 25%.

There is a PWM in the BCM2835 (the Raspberry Pi processor), and it’s output can be accessed via
GPIOI18 (it is alternate function 5). If this is connected to one of the motor controller inputs (MOTA
has been used in our motor test), and set the other motor controller input (MOTB in our test) to a
steady high or low, the speed and direction of the motor can be controlled.

1 1
MOTA MOTB

0 0

Fig. 19: The motor direction is set by MOTB. Whilst MOTA has a duty cycle of 25 %, the motor
only receives power when MOTA and MOTB are different, thus it receives power for 75% of
the time.

For example, in the diagram above we are alternating between A low/B high and A high/B high (the
second and fourth lines of the table above). When A is low, the motor will receive power making it
turn one way; when A is high it will not receive power. The end result for the 25% duty cycle shown
here is that the motor will turn one way at roughly % speed.

1 1
MOTA MOTB

0 0
Fig. 20: In this example, the truth table predicts that the motor will run in the opposite direction

at around 25% speed.

If on the other hand you set MOTB low, as in the diagram above, then when A is high the motor will
receive power making it turn in the other direction, and when A is low the motor will not receive
power. The result for the 25% duty cycle is that it will turn in the other direction at about % speed.

Testing the motor controller

The PWM is controlled by a memory map, like the GPIO and SPI bus. This memory map is part of
the setup_1io function in gb_common . c, so that is whether the PWM is used or not. Further setup
code is found in, gb_pwm. c, with an associated header file gb_pwm. h. The function setup_pwm
in gb_pwmn. c sets the speed of the PWM clock, and sets the maximum value of the PWM to 1024:
this is the value at which the duty cycle of the PWM will be 100%. It also makes sure that the PWM is
off. The two routines set_pwmO and force_pwm0 set the value that controls the duty cycle for the
PWM. set_pwmO sets the value (first checking that it is between 0 and 1024), but as there are only
certain points in the PWM cycle where a new value is picked up, if a second value is written again
quickly the first will have no effect. The force_pwm0 routine takes two arguments, a new value and
a new mode. It disables the PWM, then sets the value, then re-enables it with the given mode setting,

23

with delays in strategic places to allow the new values to be picked up. The pwm_of f routine simply
disables the PWM.

The test program for the motor controller is called motor. To set up Gertboard for this, connect
GP17 in J2 to the MOTB pin (the MOTB pin in the 2-pin header above GP1 and GP4, not the one at
the top of the board), and GP18 to MOTA in that little header. The motor leads need to be connected
to the MOTA and MOTB screw terminals at the top of the board, and the power supply for the motor
needs to be connected to the MOT+ and L screw terminals. This is shown below.

your power +
source —
goes here T-
22 e et e g & EL = =
W RlRLlBRLRLB LB LBLBLBLBLBLBL 4 g g =2
H00000000000000000000000 . . |l® o
"@eeee @eses "@eeeossm :
GND g D.2 ? % % % % Ig IR D‘) wmz.H Fuse max. 4A
i@ O00PRO0QODm GTesss
c8 B Eif E it ——
Ano:|:=-m ; ISﬂII IssII Iggg@ =E WE
DA1
NEo: 3 secescccee S ssseee
PE5([® ® @eeeeeeo® | —
PB4{@ @ RN ut
PB3|® ® c9 B _pooutps E.Ns oc0o0000 N
PB2(® ® (mm[o N[e N[N o[N o] cnnlzl eeeeeee ©
Pei|® ® 0000000000 EU selscece o
PBO|® @ uto 83w outay &2 (@ ©|0 0|0 © ®
rilee HOOO® ”’t |c10I§E| ooocece ©
rosl@ @ EEkn o @ H000000000 0000000000 gojc0000 ©
rsee|Ee o |0 ru@Eeoecee® ust | [golecieee o
PD4|@® @ o [(0x _[momememeo XXX
PD3|@ @ 123 @ ™) |Ji71| Bl B2in B3 B4 R;......... ooooooe ©
2o e - ™ ® IEJIS @eeccoccee o
PDI|® @ mel |o 000000000 meeceee
mjoe Ll muel loW™ zzzasssEgsy B, W v HS 2989l
pcsi@ @ “fcRztel |o[m)|m 2 EEEE@&E
PC4® ® K @cC15 Cl6 S &
s i = I 4 i eeoe0® sesscc oo EE® s
PC2|® @ E;’%‘ [] RQSpberry’P| T¥ DN 0RO OO0 ~ ¥ — O EEM 424 8
PCI|@ @ 250 ® |/0 extension EESES5555555553588 17 B
PCO|@[H]: pyy 2Z5@ ® 11 March 2012 : BI:I
o |m eoo0000000000OH
o= el - ® (g3 0000000000000 5V Vx

Fig. 20: The wiring diagram for the test program motor.

The code for the motor program is in motor . c. In the main routine, first the connections that must
be made on the board to run this program are printed out, then call setup_1io to get the GPIO
interface ready for use. setup_gpio is then called to set GPIO18 up for use as the PWM output and
GPIO17 up for normal output. For the latter, both INP_GPIO and OUT_GPIO are used, see page 11
for more info. To set up GPIO18, first use INP_GPIO (18) to activate the pin. One of the alternate
functions for GPIO18 is to act as the output for the PWM; this is alternative 5. Thus use the macro
SET_GPIO_ALT (18, 5) to select this alternate use of the pin. (See table Table 6-31 from the
BCM2835 datasheet, or the online version at http://elinux.org/RPi_BCM2835 GPIOs, for more
details about alternative functions for the GPIO pins. A summary of the alternate function of GPIO
pins used on the Gertboard, see the table on page 9.)

24

We set the output of GPIO17 low (to make sure that the motor doesn’t turn) and then initialize the
PWM by calling setup_pwm. We enable the PWM by setting the mode to PWMO__ENABLE using
force_pwm0. Since GPIO17 (motor controller B input) is set low, when the duty cycle on the PWM
(motor controller A input) is high enough, the motor will turn the ‘opposite way’ as described in the
motor table on page 22.

A loop now starts where the PWM is started, first with a very low duty cycle (because the value
passed to set_pwmO is low), then gradually increasing this to the maximum (which is set to 0x400 —
1024 — in setup_pwm). Then the value sent to the PWM is decreased to slow the motor down. Then
GPIO17 is set high, so that the motor will get power on the low phase of the PWM signal. The PWM
is re-enabled with the mode PWMO_ENABLE | PWMO_REVPOLAR. The reverse polarization flag flips
the PWM signal, so that a low value sent to the PWM results in a signal that is high most of the time
(rather than low most of the time). That way the same code can be used to slowly ramp up the speed
of the motor (but in the ‘one way’ direction as in the table on page 22), then slow it down again.
Finally the PWM is switched off, and the GPIO interface is closed down.

Digital to Analogue and Analogue to Digital Converters

In the Gertboard building blocks diagram on page 7, the components implementing the converters are
outlined in orange. Both the analogue converter (D/A) and analogue to digital converter (A/D) are 8-
pin chips from Microchip. The D/A is U6 (above) and the A/D is U10 (below). Each supports 2
channels.

Both use the SPI bus to communicate with the Raspberry Pi. The SPI pins on the two chips are
connected to the pins labelled SCLK, MOSI, MISO, CSnA, and CSnB in the header just above J2 on
the board (thus in the building blocks diagram, these pins are also outlined in orange). SCLK is the
clock, MOSI is the output from the RPi, and MISO is the input to the RPi. CSnA is the chip select for
the A/D, and CSnB is the chip select signal for the D/A (the ‘n’ in the signal name means that the
signal is ‘negative’, thus the chip is only selected when the pin is low). Both A/D and D/A chips have
a 10K pull-up resistor on their chip-select pins, so the devices will not be accessed if the chips select
pins are not connected.

The SPI pins are conveniently located just above GP7 to GP11 in header J2, because one of the
alternate functions of these pins is to drive the SPI signals. For example, the “ALTO” (alternative 0)
function of GPIO9 is SPI0_MISO, which is why the pin labelled MISO is just about the pin labelled
GP9. Thus to use the A/D and D/A, simply put jumpers connecting pins GP7 to GP11 to the SPI pins
directly about them (although technically you only need CSnA for the A/D and CSnB for the D/A).

In the schematics, the D/A and A/D converts are on page A-6.

Digital to analogue converter

The Gertboard uses a MCP48xx digital to analogue converter (D/A) from Microchip. The device
comes in three different types: 8, 10 or 12 bits. It is likely that MCP4802, the 8 bit version, will be
used, but if higher resolutions are needed, it can be replaced with the MCP4812 (10 bits) or MCP4822
(12 bits). These chips are all pin-compatible and are written to in the same way. In particular, the
routine that writes to the D/A assumes that writes are in 12 bits, so it is important that the value is
selected appropriately (details are below in the “Testing the D/A and A/D” section). The maximum
output voltage of the D/A — the output voltage when you send an input of all 1s —is 2.04V.

25

The analogue outputs of the two channels go to pins labelled DAO (for channel 0) and DA1 (for
channel 1) in the J29 header. Just next to these pins are ground pins (GND) to provide a reference.

Analogue to Digital converter

The Gertboard uses a MCP3002 10-bit analogue to digital converter from Microchip. It supports 2
channels with a sampling rate of ~72k samples per second (sps). The maximum value (1023) is
returned when the input voltage is 3.3V.

The analogue inputs for these two channels are ADO (for channel 0) and AD1 (for channel 1) in the
J28 header. Just next to these pins are ground pins (GND) to provide a reference.

Testing the D/A and A/D

Since the D/A and A/D converters both use the SPI bus, the common SPI bus code has been placed
into a separate file, gb_spi . c. There is also an associated header file, gb_spi . h, which contains
many macros and constants needed for interacting with the SPI bus, as well as the declarations for the
functions in gb_ spi . c. These functions are setup_spi, read_adc, and write_dac.
setup_spi sets the clock speed for the bus and clears status bits. read_adc takes an argument
specifying the channel (should be O or 1) and returns an integer with the value read from the A/D
converter. The value returned will be between 0 and 1023 (i.e. only the least significant 10 bits are
set), with O returned when the input pin for that channel is OV and 1023 returned for 3.3V.

The write_dac routine takes two arguments, a channel number (0 or 1) and a value to write. The
value written requires some explanation. The MCP48xx family of digital to analogue converters all
accept a 12 bit value. The MCP4822 uses all the bits; the MCP4812 ignores the last two; and the
MCP4802 (which is probably the one you are using) ignores the last four. Since you could use any of
those chips on the Gertboard, write_dac is written in so that it will work with all three, so it simply
sends to the D/A the value it was given. If Gertboard is fitted with the MCP4802, it can only handle
values between 0 and 255, but these must be in bits 4 through 11 (assuming the least significant bit is
bit 0) of the bit string it is sent. Thus if the desired number to be sent to the D/A is between 0 and 255,
it must be multiplied by 16 (which effectively shifts the information 4 bits to the left) before sending
this value to write_dac.

The value on the output pin, Vout, is given by the following formula (assuming the 8-bit MCP4802):

Vout = 2 5 048y
256

To test the D/A, a multimeter is required. The test program for this is dt oa. To set up Gertboard for
this test, jumpers are placed on the pins GP11, GP10, GP9, and GP7 connecting them to the SPI bus
pins above them. Attach the multimeter as follows: the black lead needs to be connected to ground.
You can use any of the pins marked with L or GND for this. The red lead needs to be connected to
DADO (to test the D/A channel 0 which is shown below) or DA1 (for channel 1). Switch the
multimeter on, and set it to measure voltages from O to around 5V.

26

+~ b © ~ o o 2

o~

;mOOOOO:;....‘Ot':“"::.lm'm}g. .‘
®®®®&&®®®®©@u S

g?c:ﬁl." NI
F @m L

o Carasay € E@seecces RPR
o cese GNDEI e RLY3
000000 cc0e HOEOEOmE) e
. () RLY4
Heee - cwliilw e
EEk o ® Hooo0000000 0000000000 RLYs
me] o |0 ru@0000000 s et
o I:n RLY6
zel (@ E‘mm R XXX XXX R
o |® 0000000 .
W el |olo/ [Eeooeee
Mmel (oW ™ cszzass ®
Ribcirzeg| |@(m) m|
<@ @Ci5 Cl6 23
e i fecee065000¢
3220 ® Raspberry Pi 9999
2330 ® 1/0 extension S8 55
%i" by B35® ® 11 March 2012
wom mel® . W[50

Fig. 21: The wiring diagram required to measure the output from the D to A converter fitted to
the Gertboard whilst running the test program dtoa.

The dtoa program first asks which channel to use and prints out the connections needed to make on
Gertboard to run the program. Then it calls setup_1io to get the GPIO ready to use, then calls
setup_ gpio to choose which pins to use and how to use them. In setup_gpio, as usual
INP_GPIO (n) (where n is the pin number) is used to activate the pins. This also sets them up to be
used as 1nputs. They should however, be used as an SPI bus, which is one of the alternative functions
for these pins (it is alternate 0). Thus we use SET_GPIO_ALT (n, a) (where n is the pin number
and a is the alternate number, in this case 0) to select this alternate use of the pins. Then the program
sends different values to the D/A and asks for real verification, using the multimeter, that the D/A
converter is generating the correct output voltage.

The test program for the A/D is called at od. To run this test a voltage source on the analogue input is
required. This is most easily provided by a potentiometer (a variable resistor). The two ends of the
potentiometer are connected, one side to high (3.3V, which you can access from any pin labelled 3V3)
and the other to low (GND or 1), and the middle (wiper) part to ADO (for channel 0 as shown below)
or ADI (for channel 1). To use the SPI bus jumpers should be installed on the pins GP11, GP10, GP9,
and GP8 connecting them to the SPI bus pins above them.

27

S T LT PETEPETCIE O
H RN1 RN mz‘gl \:ﬁﬂg‘ o
S| @@@wowowwog%u
00000

gy NN Rl

”"l 000000000 JEI:::::::
Em e oula o

ey | commle we sa w3 (S0

HO000000000 0000000000 o9
0000000 | (X0
g [HOHOH 0N o] H0000000O0O e

m 7 mRE Y wm@geeeeeee a8
.Amnxng?""“‘mnnh@1€

>x > — <
- o » e
LIL] BgosSgega

cfs o 000005 =y Ea) EL o
Raspberry Pi 129 209002290 " (R Jz" l_l@

1/0 extension SE8555555

F1 Fuse max. 4A
u7

=

PC4® @
PC3|® @

PCO| J%Ji‘. D19
o™

Developed by
G.J. van Loo
Fen Logic Ltd.

11 March 2012
[@®]3v3

H
]

<
&

Fig. 22: Wiring diagram showing how the Gertboard is connected to verify that the A/D
converter is working properly, using the test program atod.

The atod program first asks which channel should be used and prints out the connections required on
Gertboard to run the program. Then it calls setup_io to get the GPIO ready, then calls
setup_gpio to choose which pins will be used, and how they will be used. The setup_gpio
used in at od works the same way as the one in dtoa (except for activating GPIOS8 instead of
GPIO7).

Then at od repeatedly reads the 10 bit value from the A/D converter and prints out the value on the
terminal, both as an absolute number and as a bar graph (the value read is divided by 16, and the
quotient is represented as a string of ‘#° characters). One thing to be aware of is that even if the
potentiometer is not moved, exactly the same result may not appear on successive re