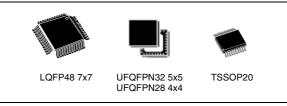
STM32F038xx



ARM®-based 32-bit MCU with 32 Kbytes Flash, timers, ADC and communication interfaces, 1.8 V

Datasheet - production data

Features

- Core: ARM[®] 32-bit Cortex[®]-M0 CPU, frequency up to 48 MHz
- Memories
 - 32 Kbytes of Flash memory
 - 4 Kbytes of SRAM with HW parity
- · CRC calculation unit
- Power management
 - Digital and I/Os supply: V_{DD} = 1.8 V ±8%
 - Analog supply: V_{DDA} = from V_{DD} to 3.6 V
 - Low power modes: Sleep, Stop
 - V_{BAT} supply for RTC and backup registers
- · Clock management
 - 4 to 32 MHz crystal oscillator
 - 32 kHz oscillator for RTC with calibration
 - Internal 8 MHz RC with x6 PLL option
 - Internal 40 kHz RC oscillator
- Up to 39 fast I/Os
 - All mappable on external interrupt vectors
 - Up to 25 I/Os with 5 V tolerant capability
- 5-channel DMA controller
- 1 x 12-bit, 1.0 μs ADC (up to 10 channels)
 - Conversion range: 0 to 3.6V
 - Separate analog supply from 2.4 up to 3.6 V
- Up to 9 timers
 - 1 x 16-bit 7-channel advanced-control timer for 6 channels PWM output, with deadtime generation and emergency stop
 - 1 x 32-bit and 1 x 16-bit timer, with up to 4 IC/OC, usable for IR control decoding
 - 1 x 16-bit timer, with 2 IC/OC, 1 OCN, deadtime generation and emergency stop
 - 1 x 16-bit timer, with IC/OC and OCN, deadtime generation, emergency stop and modulator gate for IR control

- 1 x 16-bit timer with 1 IC/OC
- Independent and system watchdog timers
- SysTick timer: 24-bit downcounter
- Calendar RTC with alarm and periodic wakeup from Stop
- · Communication interfaces
 - 1 x I²C interface; supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, and wakeup from Stop mode
 - 1 x USART supporting master synchronous SPI and modem control; one with ISO7816 interface, LIN, IrDA capability auto baud rate detection and wakeup feature
 - 1 x SPI (18 Mbit/s) with 4 to 16 programmable bit frames, with I²S interface multiplexed
- Serial wire debug (SWD)
- 96-bit unique ID
- Extended temperature range: -40 to +105°C
- All packages ECOPACK[®]2

Table 1. Device summary

Reference	Part number
STM32F038xx	STM32F038C6, STM32F038F6, STM32F038G6, STM32F038K6

Contents STM32F038xx

Contents

1	Intro	duction		8	
2	Desc	ription		9	
3	Func	tional o	verview	. 12	
	3.1	ARM®-	Cortex [®] -M0 core with embedded Flash and SRAM	. 12	
	3.2	Memori	ies	. 12	
	3.3	Boot m	odes	. 12	
	3.4	Cyclic r	edundancy check calculation unit (CRC)	. 13	
	3.5	Power	management	. 13	
		3.5.1	Power supply schemes	. 13	
		3.5.2	Power-on reset	. 13	
		3.5.3	Low-power modes	. 13	
	3.6	Clocks	and startup	. 14	
	3.7	Genera	ıl-purpose inputs/outputs (GPIOs)	. 15	
	3.8	Direct r	memory access controller (DMA)	. 16	
	3.9				
		3.9.1	Nested vectored interrupt controller (NVIC)	. 16	
		3.9.2	Extended interrupt/event controller (EXTI)	. 16	
	3.10	Analog	to digital converter (ADC)	. 16	
		3.10.1	Temperature sensor	. 17	
		3.10.2	Internal voltage reference (V _{REFINT})	. 17	
		3.10.3	V _{BAT} battery voltage monitoring	. 18	
	3.11	Timers	and watchdogs	. 18	
		3.11.1	Advanced-control timer (TIM1)		
			General-purpose timers (TIM23, TIM14, 16, 17)		
		3.11.3	Independent watchdog (IWDG)		
		3.11.4	System window watchdog (WWDG)		
		3.11.5	SysTick timer		
	3.12		ne clock (RTC) and backup registers		
	3.13		tegrated circuit interfaces (I ² C)		
	3.14	Univers	sal synchronous/asynchronous receiver transmitters (USART) .	. 22	
	3.15	Serial p	peripheral interface (SPI)/Inter-integrated sound interfaces (I ² S)	. 22	

	3.16	Serial v	vire debug port (SW-DP)	23
4	Pino	uts and	pin description	. 24
5	Mem	ory map	pping	. 33
6	Elect	rical ch	aracteristics	36
	6.1	Parame	eter conditions	36
		6.1.1	Minimum and maximum values	. 36
		6.1.2	Typical values	. 36
		6.1.3	Typical curves	. 36
		6.1.4	Loading capacitor	. 36
		6.1.5	Pin input voltage	. 36
		6.1.6	Power supply scheme	. 37
		6.1.7	Current consumption measurement	. 38
	6.2	Absolut	e maximum ratings	39
	6.3	Operati	ng conditions	41
		6.3.1	General operating conditions	. 41
		6.3.2	Operating conditions at power-up / power-down	. 42
		6.3.3	Embedded reference voltage	. 42
		6.3.4	Supply current characteristics	. 43
		6.3.5	Wakeup time from low-power mode	. 52
		6.3.6	External clock source characteristics	. 53
		6.3.7	Internal clock source characteristics	. 59
		6.3.8	PLL characteristics	. 61
		6.3.9	Memory characteristics	. 62
		6.3.10	EMC characteristics	. 62
		6.3.11	Electrical sensitivity characteristics	. 64
		6.3.12	I/O current injection characteristics	. 64
		6.3.13	I/O port characteristics	. 65
		6.3.14	NRST and NPOR pin characteristics	. 71
		6.3.15	12-bit ADC characteristics	. 72
		6.3.16	Temperature sensor characteristics	. 76
		6.3.17	V _{BAT} monitoring characteristics	. 76
		6.3.18	Timer characteristics	. 76
		6.3.19	Communication interfaces	. 77

Contents STM32F038xx

7	Pack	Package characteristics				
	7.1	Packa	ge mechanical data	. 84		
	7.2	Therm	al characteristics	. 93		
		7.2.1	Reference document	93		
		7.2.2	Selecting the product temperature range	93		
8	Part	numbe	ring	. 95		
9	Revi	sion his	story	96		

STM32F038xx List of tables

List of tables

Table 1.	Device summary	1
Table 2.	STM32F038xx family device features and peripheral counts	10
Table 3.	Temperature sensor calibration values	
Table 4.	Internal voltage reference calibration values	17
Table 5.	Timer feature comparison	
Table 6.	Comparison of I2C analog and digital filters	21
Table 7.	STM32F038xx I ² C implementation	
Table 8.	STM32F038xx SPI/I2S implementation	23
Table 9.	Legend/abbreviations used in the pinout table	26
Table 10.	Pin definitions	
Table 11.	Alternate functions selected through GPIOA_AFR registers for port A	
Table 12.	Alternate functions selected through GPIOB_AFR registers for port B	
Table 13.	STM32F038xx peripheral register boundary addresses	
Table 14.	Voltage characteristics	
Table 15.	Current characteristics	
Table 16.	Thermal characteristics	
Table 17.	General operating conditions	
Table 18.	Operating conditions at power-up / power-down	
Table 19.	Embedded internal reference voltage	
Table 20.	Typical and maximum current consumption from V_{DD} supply at $VDD = 1.8 \ V \dots$	
Table 21.	Typical and maximum current consumption from the $V_{\mbox{\scriptsize DDA}}$ supply	
Table 22.	Typical and maximum consumption in Stop mode	
Table 23.	Typical and maximum current consumption from the V _{BAT} supply	46
Table 24.	Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal	47
Table 25.	Switching output I/O current consumption	
Table 26.	Peripheral current consumption	
Table 27.	Low-power mode wakeup timings	
Table 28.	High-speed external user clock characteristics.	
Table 29.	Low-speed external user clock characteristics	
Table 30.	HSE oscillator characteristics	
Table 31.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 32.	HSI oscillator characteristics	
Table 33.	HSI14 oscillator characteristics	60
Table 34.	LSI oscillator characteristics	61
Table 35.	PLL characteristics	61
Table 36.	Flash memory characteristics	62
Table 37.	Flash memory endurance and data retention	62
Table 38.	EMS characteristics	63
Table 39.	EMI characteristics	63
Table 40.	ESD absolute maximum ratings	64
Table 41.	Electrical sensitivities	64
Table 42.	I/O current injection susceptibility	65
Table 43.	I/O static characteristics	
Table 44.	Output voltage characteristics	69
Table 45.	I/O AC characteristics	
Table 46.	NRST pin characteristics	
Table 47.	NPOR pin characteristics	72

List of tables STM32F038xx

Table 48.	ADC characteristics	73
Table 49.	R_{AIN} max for $f_{ADC} = 14$ MHz	74
Table 50.	ADC accuracy	
Table 51.	TS characteristics	
Table 52.	V _{BAT} monitoring characteristics	76
Table 53.	TIMx characteristics	
Table 54.	IWDG min/max timeout period at 40 kHz (LSI)	77
Table 55.	WWDG min/max timeout value at 48 MHz (PCLK)	77
Table 56.	I2C analog filter characteristics	
Table 57.	SPI characteristics	
Table 58.	I ² S characteristics	81
Table 59.	LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data	85
Table 60.	UFQFPN32 – 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package	
	mechanical data	87
Table 61.	UFQFPN28 – 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package	
	mechanical data	89
Table 62.	TSSOP20 – 20-pin thin shrink small outline package mechanical data	91
Table 63.	Package thermal characteristics	93
Table 64.	Ordering information scheme	95
Table 65.	Document revision history	

STM32F038xx List of figures

List of figures

Figure 1.	Block diagram	11
Figure 2.	Clock tree	
Figure 3.	LQFP48 48-pin package pinout	24
Figure 4.	UFQFPN32 32-pin package pinout	24
Figure 5.	UFQFPN28 28-pin package pinout	25
Figure 6.	TSSOP20 20-pin package pinout	25
Figure 7.	STM32F038xx memory map	33
Figure 8.	Pin loading conditions	36
Figure 9.	Pin input voltage	36
Figure 10.	Power supply scheme	37
Figure 11.	Current consumption measurement scheme	38
Figure 12.	High-speed external clock source AC timing diagram	53
Figure 13.	Low-speed external clock source AC timing diagram	54
Figure 14.	Typical application with an 8 MHz crystal	56
Figure 15.	Typical application with a 32.768 kHz crystal	58
Figure 16.	HSI oscillator accuracy characterization results	
Figure 17.	HSI14 oscillator accuracy characterization results	
Figure 18.	TC and TTa I/O input characteristics	
Figure 19.	Five volt tolerant (FT and FTf) I/O input characteristics	
Figure 20.	I/O AC characteristics definition	
Figure 21.	Recommended NRST pin protection	
Figure 22.	ADC accuracy characteristics	
Figure 23.	Typical connection diagram using the ADC	
Figure 24.	SPI timing diagram - slave mode and CPHA = 0	
Figure 25.	SPI timing diagram - slave mode and CPHA = 1	
Figure 26.	SPI timing diagram - master mode	
Figure 27.	I2S slave timing diagram (Philips protocol)	
Figure 28.	I2S master timing diagram (Philips protocol)	
Figure 29.	LQFP48 - 7 x 7 mm, 48-pin low-profile quad flat package outline	
Figure 30.	LQFP48 recommended footprint	
Figure 31.	UFQFPN32 - 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package outline	
Figure 32.	UFQFPN32 recommended footprint	
Figure 33.	UFQFPN28 - 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package outline	
Figure 34.	UFQFPN28 recommended footprint	
Figure 35.	TSSOP20 - 20-pin thin shrink small outline	
Figure 36.	TSSOP20 recommended footprint	92

Introduction STM32F038xx

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F038xx microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com.

For information on the $\mathsf{ARM}^{\mathbb{B}}$ $\mathsf{Cortex}^{\mathbb{B}}$ -M0 core, please refer to the $\mathsf{Cortex}^{\mathbb{B}}$ -M0 Technical Reference Manual, available from the www.arm.com website.

STM32F038xx Description

2 Description

The STM32F038xx microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at a 48 MHz maximum frequency, high-speed embedded memories (32 Kbytes of Flash memory and 4 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (one I2C, one SPI/ I2S and one USART), one 12-bit ADC, up to five general-purpose 16-bit timers, a 32-bit timer and an advanced-control PWM timer.

The STM32F038xx microcontrollers operate in the -40 to +85 $^{\circ}$ C and -40 to +105 $^{\circ}$ C temperature ranges at a 1.8 V \pm 8% power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F038xx microcontrollers include devices in four different packages ranging from 20 pins to 48 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F038xx peripherals proposed.

These features make the STM32F038xx microcontrollers suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.

Description STM32F038xx

Table 2. STM32F038xx family device features and peripheral counts

Peripheral		STM32F038F	STM32F038G	STM32F038K	STM32F038C			
Flash (Kbyte	es)	32						
SRAM (Kbyt	tes)		4	1				
Advanced control		1 (16-bit)						
Timers	General purpose		4 (16-bit) 1 (32-bit)					
	SPI (I2S) ⁽¹⁾		1					
Comm. interfaces	I ² C	1						
I I I I I I I I I I I I I I I I I I I	USART	1						
12-bit ADC (number of channels)		1 (9 ext. + 3 int.)	1 (10 ext. + 3 int.)					
GPIOs		14	22	26	38			
Max. CPU fr	equency	48 MHz						
Operating vo	oltage	$V_{DD} = 1.8 \text{ V} \pm 8\%, V_{DDA} = 1.65 \text{ V} \text{ to } 3.6 \text{ V}$						
Operating te	mperature	Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C						
Packages		TSSOP20	UFQFPN28	UFQFPN32	LQFP48			

^{1.} The SPI interface can be used either in SPI mode or in I2S audio mode.

STM32F038xx Description

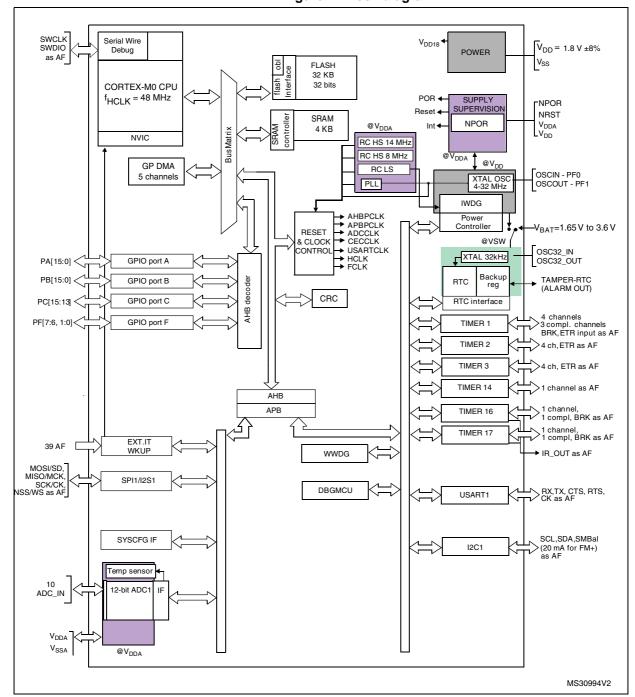


Figure 1. Block diagram

3 Functional overview

3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM

The ARM® Cortex®-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The STM32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the device family.

3.2 Memories

The device has the following features:

- 4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 32 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 Power management

3.5.1 Power supply schemes

- V_{DD} = 1.8 V ± 8%: external power supply for I/Os and digital logic. Provided externally through V_{DD} pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 10: Power supply scheme.

3.5.2 Power-on reset

To guarantee a proper power-on reset, the NPOR pin must be held low until V_{DD} is stable. When V_{DD} is stable, the reset state can be exited either by:

- putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by
- forcing the pin to high level by connecting it to V_{DDA}.

3.5.3 Low-power modes

The STM32F038xx microcontrollers support two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, RTC, I2C1 or USART1.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

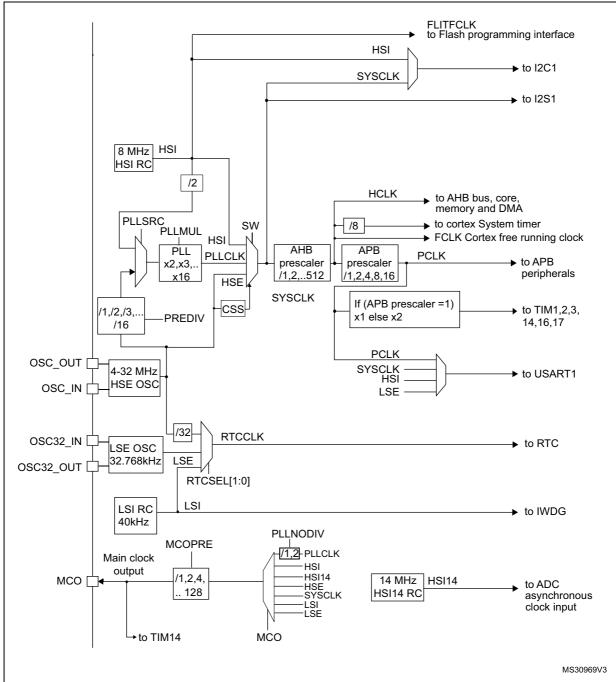


Figure 2. Clock tree

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except TIM14) and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 39 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog to digital converter (ADC)

The 12-bit analog to digital converter has up to 10 external and 3 internal (temperature

sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address	
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9	
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3	

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address				
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB				

Table 4. Internal voltage reference calibration values

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA} , and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.11 Timers and watchdogs

The STM32F038xx devices include up to five general-purpose timers and an advanced control timer.

Table 5 compares the features of the different timers.

Table 5. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
	TIM2	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
General	TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
purpose	TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No
	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	Yes

3.11.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- · One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.11.2 General-purpose timers (TIM2..3, TIM14, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F038xx devices (see *Table 5* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F038xx devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM16 and TIM17

Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

They each have a single channel for input capture/output compare, PWM or one-pulse mode output.

TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.11.3 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop mode. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.11.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.11.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source (HCLK or HCLK/8)

3.12 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
- Programmable alarm with wake up from Stop mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Two anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop mode on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop mode on timestamp event detection.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32

3.13 Inter-integrated circuit interfaces (I²C)

The I²C interface (I2C1) can operate in multimaster or slave modes. It can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with extra output drive.

It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). It also includes programmable analog and digital noise filters.

	Analog filter	Digital filter	
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks	
Benefits	Available in Stop mode	Extra filtering capability vs. standard requirements. Stable length	
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.	

Table 6. Comparison of I2C analog and digital filters

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent

from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C interface can be served by the DMA controller.

Table 7. STM32F038xx I²C implementation

I2C features ⁽¹⁾	I2C1
7-bit addressing mode	Х
10-bit addressing mode	Х
Standard mode (up to 100 kbit/s)	Х
Fast mode (up to 400 kbit/s)	Х
Fast Mode Plus with extra output drive I/Os (up to 1 Mbit/s)	х
Independent clock	Х
SMBus	Х
Wakeup from STOP	Х

^{1.} X = supported.

3.14 Universal synchronous/asynchronous receiver transmitters (USART)

The device embeds one universal synchronous/asynchronous receiver transmitter (USART1), which communicate at speeds of up to 6 Mbit/s.

It provides hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interface can be served by the DMA controller.

3.15 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I²S)

The SPI is able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

One standard I²S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency.

Table 8. STM32F038xx SPI/I2S implementation

SPI features ⁽¹⁾	SPI
Hardware CRC calculation	X
Rx/Tx FIFO	Х
NSS pulse mode	Х
I2S mode	Х
TI mode	X

^{1.} X = supported.

3.16 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

4 Pinouts and pin description

Figure 3. LQFP48 48-pin package pinout

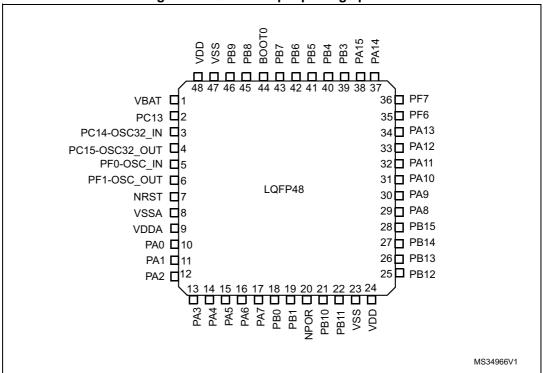
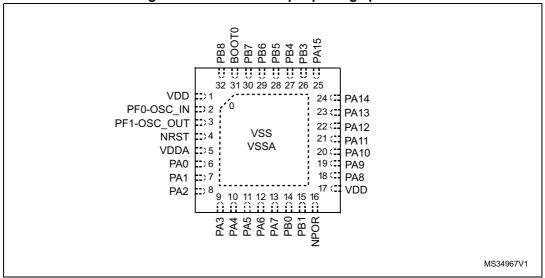



Figure 4. UFQFPN32 32-pin package pinout

577

24/97 DocID026079 Rev 1

Figure 5. UFQFPN28 28-pin package pinout

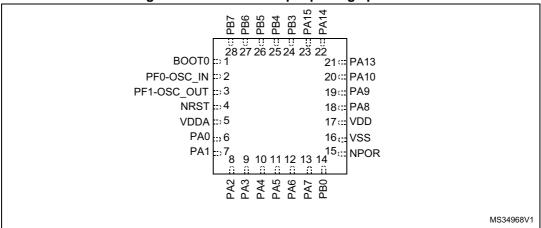


Figure 6. TSSOP20 20-pin package pinout

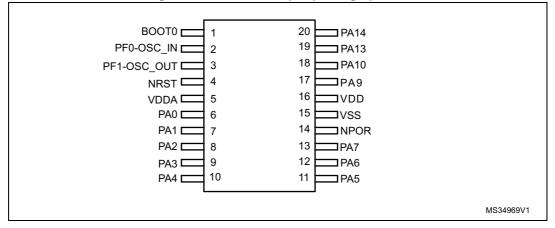


Table 9. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition			
Pin r	name		e specified in brackets below the pin name, the pin function reset is the same as the actual pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
		FTf	5 V tolerant I/O, FM+ capable			
		TTa	3.3 V tolerant I/O directly connected to ADC			
I/O str	ructure	POR	POR External power on reset pin with embedded weak pull-up resistor, powered from V _{DDA}			
		TC	Standard 3.3V I/O			
		В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
No	tes	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during			
	Alternate functions Functions selected through GPIOx_AFR registers					
Pin functions	Additional functions	Functions directly selected/enabled through peripheral registers				

Table 10. Pin definitions

	Pin	numbe	r					Pin fund	ctions
LQFP48	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	-	-	-	VBAT	S			Backup pow	er supply
2		-	-	PC13	I/O	тс	(1)(2)		RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
3	-	-	-	PC14-OSC32_IN (PC14)	I/O	TC	(1)(2)		OSC32_IN

Table 10. Pin definitions (continued)

	Pin	numbe	r	Table 10. F				Pin fun	ctions	
LQFP48	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
4	-	-	-	PC15-OSC32_OUT (PC15)	I/O	тс	(1)(2)		OSC32_OUT	
5	2	2	2	PF0-OSC_IN (PF0)	I/O	FT			OSC_IN	
6	3	3	3	PF1-OSC_OUT (PF1)	I/O	FT			OSC_OUT	
7	4	4	4	NRST	I/O	RST		Device reset input / ir (active		
8	0	-	-	VSSA	S			Analog g	round	
9	5	5	5	VDDA	S			Analog power supply		
10	6	6	6	PA0	I/O	TTa		TIM2_CH1_ETR, USART1_CTS	ADC_IN0, RTC_TAMP2, WKUP1	
11	7	7	7	PA1	I/O	TTa		TIM2_CH2, EVENTOUT, USART1_RTS	ADC_IN1	
12	8	8	8	PA2	I/O	TTa		TIM2_CH3, USART1_TX	ADC_IN2	
13	9	9	9	PA3	I/O	TTa		TIM2_CH4, USART1_RX	ADC_IN3	
14	10	10	10	PA4	I/O	TTa	SPI1_NSS, I2S1_WS, TIM14_CH1, USART1_CK		ADC_IN4	
15	11	11	11	PA5	I/O	ТТа		SPI1_SCK, I2S1_CK, TIM2_CH1_ETR	ADC_IN5	
16	12	12	12	PA6	I/O	TTa		SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT	ADC_IN6	

Table 10. Pin definitions (continued)

	Pin	numbe	r	Table 10. I				Pin fund	ctions
LQFP48	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
17	13	13	13	PA7	I/O	TTa		SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT	ADC_IN7
18	14	14	-	PB0	I/O	TTa		TIM3_CH3, TIM1_CH2N, EVENTOUT	ADC_IN8
19	15	-	-	PB1	I/O	TTa		TIM3_CH4, TIM14_CH1, TIM1_CH3N ADC_IN9	
20	16	15	14	NPOR	I	POR	(3)	Device power-o	on reset input
21	-	-	-	PB10	I/O	FTf		TIM2_CH3, I2C1_SCL	
22	-	-	-	PB11	I/O	FTf		TIM2_CH4, EVENTOUT, I2C1_SDA	
23	0	16	15	VSS	S			Grou	nd
24	17	17	16	VDD	S			Digital pow	er supply
25	-	-	-	PB12	I/O	FT	TIM1_BKIN, EVENTOUT, SPI1_NSS		
26	1	-	-	PB13	I/O	FT		TIM1_CH1N, SPI1_SCK	
27	-	-	-	PB14	I/O	FT		TIM1_CH2N, SPI1_MISO	_
28	-	-	-	PB15	I/O	FT		TIM1_CH3N, SPI1_MOSI	RTC_REFIN

Table 10. Pin definitions (continued)

	Pin	numbe	r	Table 10. I				Pin fund	ctions
LQFP48	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
29	18	18	-	PA8	I/O	FT		USART1_CK, TIM1_CH1, EVENTOUT, MCO	
30	19	19	17	PA9	I/O	FTf		USART1_TX, TIM1_CH2, I2C1_SCL	
31	20	20	18	PA10	I/O	FTf		USART1_RX, TIM1_CH3, TIM17_BKIN, I2C1_SDA	
32	21	-	-	PA11	I/O	FT		USART1_CTS, TIM1_CH4, EVENTOUT	
33	22	1	-	PA12	I/O	FT		USART1_RTS, TIM1_ETR, EVENTOUT	
34	23	21	19	PA13 (SWDIO)	I/O	FT	(4)	IR_OUT, SWDIO	
35		-	-	PF6	I/O	FTf		I2C1_SCL	
36	-	-	-	PF7	I/O	FTf		I2C1_SDA	
37	24	22	20	PA14 (SWCLK)	I/O	FT	(4)	USART1_TX, SWCLK	
38	25	23	-	PA15	I/O	FT		SPI1_NSS, I2S1_WS, TIM2_CH_ETR, EVENTOUT, USART1_RX	
39	26	24	-	PB3	I/O	FT		SPI1_SCK, I2S1_CK, TIM2_CH2, EVENTOUT	

Table 10. Pin definitions (continued)

	Pin	numbe	r	Tuble 10.1				Pin fun	ctions
LQFP48	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
40	27	25	-	PB4	I/O	FT		SPI1_MISO, I2S1_MCK, TIM3_CH1, EVENTOUT	
41	28	26	-	PB5	I/O	FT		SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	
42	29	27	-	PB6	I/O	FTf		I2C1_SCL, USART1_TX, TIM16_CH1N	
43	30	28	-	PB7	I/O	FTf		I2C1_SDA, USART1_RX, TIM17_CH1N	
44	31	1	1	воото	I	В		Boot memor	y selection
45	32	-	-	PB8	I/O	FTf		I2C1_SCL, TIM16_CH1	
46	-	-	-	PB9	I/O	FTf		I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT	
47	0	-	-	VSS	S			Ground	
48	1	-	-	VDD	S			Digital pow	er supply

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (e.g. to drive an LED).

30/97 DocID026079 Rev 1

^{2.} After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual.

^{3.} These pins are powered by V_{DDA} .

^{4.} After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

Table 11. Alternate functions selected through GPIOA_AFR registers for port A

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0		USART1_CKS	TIM2_CH1_ ETR					
PA1	EVENTOUT	USART1_TX	TIM2_CH2					
PA2		USART1_RX	TIM2_CH3					
PA3		USART1_CTS	TIM2_CH4					
PA4	SPI1_NSS, I2S1_WS	USART1_RTS			TIM14_CH1			
PA5	SPI1_SCK, I2S1_CK		TIM2_CH1_ ETR					
PA6	SPI1_MISO, I2S1_MCK	TIM3_CH1	TIM1_BKIN			TIM16_CH1	EVENTOUT	
PA7	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM1_CH1N		TIM14_CH1	TIM17_CH1	EVENTOUT	
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT				
PA9		USART1_TX	TIM1_CH2		I2C1_SCL			
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3		I2C1_SDA			
PA11	EVENTOUT	USART1_CTS	TIM1_CH4					
PA12	EVENTOUT	USART1_RTS	TIM1_ETR					
PA13	SWDIO	IR_OUT						
PA14	SWCLK	USART1_TX						
PA15	SPI1_NSS, I2S1_WS	USART1_RX	TIM2_CH1_ ETR	EVENTOUT				

DocID026079 Rev 1

Table 12. Alternate functions selected through GPIOB_AFR registers for port B

Pin name	AF0	AF1	AF2	AF3
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	
PB2				
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	
PB8		I2C1_SCL	TIM16_CH1	
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT
PB10		I2C1_SCL	TIM2_CH3	
PB11	EVENTOUT	I2C1_SDA	TIM2_CH4	
PB12	SPI1_NSS	EVENTOUT	TIM1_BKIN	
PB13	SPI1_SCK		TIM1_CH1N	
PB14	SPI1_MISO		TIM1_CH2N	
PB15	SPI1_MOSI		TIM1_CH3N	

STM32F038xx Memory mapping

5 Memory mapping

0xFFFF FFFF AHB2 0x4800 0000 0xE010 0000 0xE000 0000 0xC000 0000 0x4002 43FF AHB1 5 0x4002 0000 0xA000 0000 0x4001 8000 0x1FFF FFFF APB 0x1FFF FC00 0x4001 0000 Option bytes 0x1FFF F800 0x8000 0000 0x4000 8000 3 0x1FFF EC00 0x6000 0000 0x4000 0000 2 Peripherals 0x4000 0000 0x0801 0000 0x0800 8000 Flash memory SRAM 0x2000 0000 0x0800 0000 CODE 0x0001 0000 0x0000 8000 Flash, system memory or SRAM, depending on BOOT configuration 0x0000 0000 MS19840V2

Figure 7. STM32F038xx memory map

Memory mapping STM32F038xx

Table 13. STM32F038xx peripheral register boundary addresses

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
	0x4800 0C00 - 0x4800 13FF	2KB	Reserved
AHB2	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
ALID4	0x4002 2000 - 0x4002 23FF	1 KB	FLASH Interface
AHB1	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1KB	TIM17
	0x4001 4400 - 0x4001 47FF	1KB	TIM16
	0x4001 3C00 - 0x4001 43FF	2KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1KB	USART1
APB	0x4001 3400 - 0x4001 37FF	1KB	Reserved
	0x4001 3000 - 0x4001 33FF	1KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1KB	Reserved
	0x4001 2400 - 0x4001 27FF	1KB	ADC
	0x4001 0800 - 0x4001 23FF	7KB	Reserved
	0x4001 0400 - 0x4001 07FF	1KB	EXTI
	0x4001 0000 - 0x4001 03FF	1KB	SYSCFG
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

STM32F038xx Memory mapping

Table 13. STM32F038xx peripheral register boundary addresses (continued)

Bus	Boundary address	Size	Peripheral
	0x4000 7400 - 0x4000 7FFF	3KB	Reserved
	0x4000 7000 - 0x4000 73FF	1KB	PWR
	0x4000 5800 - 0x4000 6FFF	6KB	Reserved
	0x4000 5400 - 0x4000 57FF	1KB	I2C1
	0x4000 3400 - 0x4000 53FF	8KB	Reserved
	0x4000 3000 - 0x4000 33FF	1KB	IWDG
APB	0x4000 2C00 - 0x4000 2FFF	1KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1KB	RTC
	0x4000 2400 - 0x4000 27FF	1KB	Reserved
	0x4000 2000 - 0x4000 23FF	1KB	TIM14
	0x4000 0800 - 0x4000 1FFF	6KB	Reserved
	0x4000 0400 - 0x4000 07FF	1KB	TIM3
	0x4000 0000 - 0x4000 03FF	1KB	TIM2

Electrical characteristics STM32F038xx

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

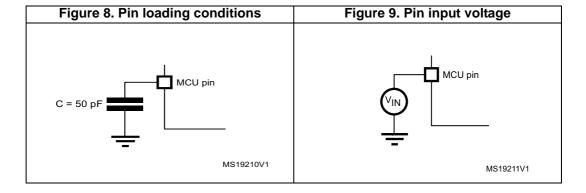
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 1.8$ V and $V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

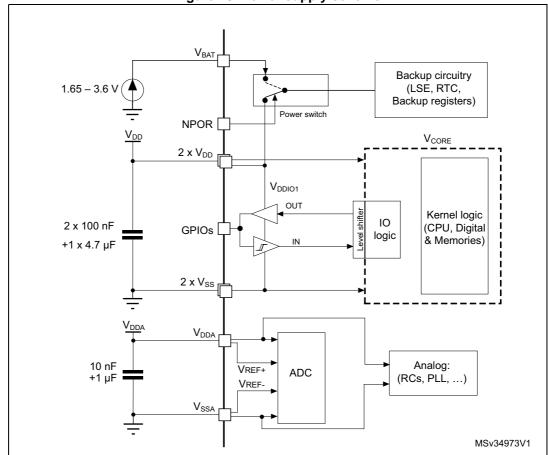
6.1.4 Loading capacitor

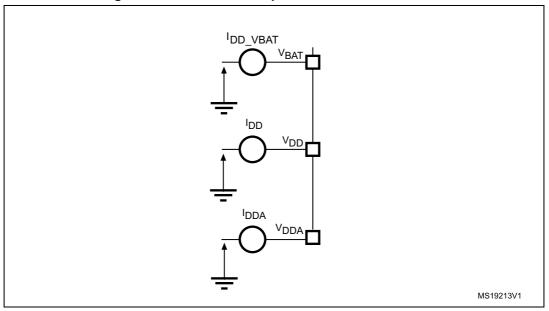
The loading conditions used for pin parameter measurement are shown in *Figure 8*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 9.

6.1.6 Power supply scheme




Figure 10. Power supply scheme

Caution:

Each power supply pair (V_{DD}/V_{SS} , V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.1.7 Current consumption measurement

Figure 11. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14: Voltage characteristics*, *Table 15: Current characteristics* and *Table 16: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 14. Voltage characteristics⁽¹⁾

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage	-0.3	1.95	V
V _{DDA} -V _{SS}	External analog supply voltage	-0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for V _{DD} > V _{DDA}	-	0.4	٧
V _{BAT} -V _{SS}	External backup supply voltage	-0.3	4.0	V
	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DDIOx} + 4.0	V
	Input voltage on POR pins	V _{SS} - 0.3	V _{DDA} + 4.0	V
V _{IN} ⁽²⁾	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
	BOOT0	0	9.0	٧
	Input voltage on any other pin	V _{SS} - 0.3	4.0	V
I∆V _{DDx} I	Variations between different V _{DD} power pins	-	50	mV
IV _{SSx} – V _{SS} I	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3 sensitivity chara		

^{1.} All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

^{2.} V_{IN} maximum must always be respected. Refer to *Table 15: Current characteristics* for the maximum allowed injected current values.

Table 15. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
Σl _{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
71	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
$\Sigma I_{O(PIN)}$	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	mA
	Injected current on POR, B, FT and FTf pins	-5/+0 ⁽⁴⁾	
$I_{\rm INJ(PIN)}^{(3)}$	Injected current on TC and RST pin	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
$\Sigma I_{\text{INJ(PIN)}}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

- All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
 permitted range.
- 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
- 3. A positive injection is induced by $V_{IN} > V_{DDIOx}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 14: Voltage characteristics* for the maximum allowed input voltage values.
- 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value
- On these I/Os, a positive injection is induced by V_{IN} > V_{DDA}. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 50: ADC accuracy*.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 17. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency		0	48	MHz	
f _{PCLK}	Internal APB clock frequency		0	48	IVII IZ	
V_{DD}	Standard operating voltage		1.65	1.95	V	
V	Analog operating voltage (ADC not used)	Must have a potential equal	V _{DD}	3.6	V	
V_{DDA}	Analog operating voltage (ADC used)	to or higher than V _{DD}	2.4	3.6	V	
V_{BAT}	Backup operating voltage		1.65	3.6	V	
		TC and RST I/O	-0.3	V _{DDIOx} +0.3		
M	V _{IN} I/O input voltage TTa and POR I/O FT and FTf I/O	TTa and POR I/O	-0.3	V _{DDA} +0.3	V	
νIN		FT and FTf I/O	-0.3	5.2 ⁽¹⁾	V	
		BOOT0	0	5.2		
	LQFP48		-	364		
Б	Power dissipation at T _A = 85 °C	UFQFPN32	-	526	\^/	
P_{D}	for suffix 6 or $T_A = 105$ °C for suffix $7^{(2)}$	UFQFPN28	-	169	mW	
		TSSOP20	-	182		
	Ambient temperature for the	Maximum power dissipation	-40	85	°C	
Ta	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	-0	
IA	Ambient temperature for the	Maximum power dissipation	-40	105	°C	
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125	-0	
TJ	lunction tomporature re-	Suffix 6 version	-40	105	°C	
IJ	Junction temperature range	Suffix 7 version	-40	125	- °C	

^{1.} To sustain a voltage higher than $V_{DDIOx}+0.3\ V$, the internal pull-up/pull-down resistors must be disabled.

^{2.} If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.2: Thermal characteristics.

In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.2: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 18* are derived from tests performed under the ambient temperature condition summarized in *Table 17*.

Table 18. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate	_	0	∞	
t _{VDD}	V _{DD} fall time rate	-	20	∞	μs/V
+	V _{DDA} rise time rate	_	0	∞	μ5/ ν
t _{VDDA}	V _{DDA} fall time rate	-	20	∞	

6.3.3 Embedded reference voltage

The parameters given in *Table 19* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 19. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	-40 °C < T _A < +105 °C	1.16	1.2	1.25	V
V _{REFINT}	internal reference voltage	-40 °C < T _A < +85 °C	1.16	1.2	1.24 ⁽¹⁾	V
t _{S_vrefint}	ADC sampling time when reading the internal reference voltage		4 ⁽²⁾	-	-	μs
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V	-	-	10 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient		- 100 ⁽²⁾	-	100 ⁽²⁾	ppm/°C
T _{VREFINT_RDY}	Internal reference voltage temporization		1.5	2.5	4.5	ms

^{1.} Data based on characterization results, not tested in production.

^{2.} Guaranteed by design, not tested in production.

^{3.} Guaranteed by design, not tested in production. This parameter is the latency between the time when pin NPOR is set to 1 by the application and the time when the VREFINTRDYF status bit is set to 1 by the hardware.

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 11: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 20* to *Table 24* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 20. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 1.8 V

				All	periph	erals en	abled			erals dis		
Symbol	Parameter	Conditions	f _{HCLK}	T	IV	lax @ T	A ⁽¹⁾	T	N	lax @ T	A ⁽¹⁾	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			48 MHz	18.0	TBD	TBD	TBD	11.2	TBD	TBD	TBD	
		External	32 MHz	12.4	TBD	TBD	TBD	7.6	TBD	TBD	TBD	
	Supply current in Run mode, code	clock (HSE	24 MHz	9.9	TBD	TBD	TBD	6.1	TBD	TBD	TBD	
		bypass)	8 MHz	3.3	TBD	TBD	TBD	2.2	TBD	TBD	TBD	
			1 MHz	0.8	TBD	TBD	TBD	0.7	TBD	TBD	TBD	
	executing	cuting	48 MHz	18.9	TBD	TBD	TBD	11.6	TBD	TBD	TBD	
	from Flash	Internal	32 MHz	12.8	TBD	TBD	TBD	7.9	TBD	TBD	TBD	
		clock (HSI)	24 MHz	9.7	TBD	TBD	TBD	6.1	TBD	TBD	TBD	
			8 MHz	3.5	TBD	TBD	TBD	2.3	TBD	TBD	TBD	
			48 MHz	17.3	TBD	TBD	TBD	10.2	TBD	TBD	TBD	
			32 MHz	11.2	TBD	TBD	TBD	6.7	TBD	TBD	TBD	-
	Supply		24 MHz	8.9	TBD	TBD	TBD	5.1	TBD	TBD	TBD	
	current in		8 MHz	2.8	TBD	TBD	TBD	1.7	TBD	TBD	TBD	
I_{DD}	Run mode, code		1 MHz	0.3	TBD	TBD	TBD	0.2	TBD	TBD	TBD	mA
	executing		48 MHz	17.4	TBD	TBD	TBD	10.3	TBD	TBD	TBD	
	from RAM	Internal	32 MHz	11.8	TBD	TBD	TBD	6.9	TBD	TBD	TBD	
		clock (HSI)	24 MHz	9.0	TBD	TBD	TBD	5.2	TBD	TBD	TBD	
			8 MHz	3.0	TBD	TBD	TBD	1.7	TBD	TBD	TBD	
			48 MHz	10.6	TBD	TBD	TBD	2.4	TBD	TBD	TBD	
		External	32 MHz	6.9	TBD	TBD	TBD	1.5	TBD	TBD	TBD	
	Supply current in	clock (HSE	24 MHz	5.4	TBD	TBD	TBD	1.2	TBD	TBD	TBD	
	Sleep mode, code executing from Flash or RAM Internal	bypass)	8 MHz	1.7	TBD	TBD	TBD	0.4	TBD	TBD	TBD	
			1 MHz	0.2	TBD	TBD	TBD	0.1	TBD	TBD	TBD	
			48 MHz	10.8	TBD	TBD	TBD	2.4	TBD	TBD	TBD	
		Internal	32 MHz	7.3	TBD	TBD	TBD	1.6	TBD	TBD	TBD	
		clock (HSI)	24 MHz	5.5	TBD	TBD	TBD	1.3	TBD	TBD	TBD	
			8 MHz	1.9	TBD	TBD	TBD	0.4	TBD	TBD	TBD	

^{1.} Data based on characterization results, not tested in production unless otherwise specified.

Table 21. Typical and maximum current consumption from the V_{DDA} supply

		neter Conditions			V _{DDA}	= 2.4 V			V _{DDA}	TBD		
Symbol	Parameter		f _{HCLK}	Tvn	М	ах @ Т _А	(2)	Тур	М	ax @ T _A	(2)	Unit
				Тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C	
		HSE	48 MHz	149	TBD	TBD	TBD	162	TBD	TBD	TBD	
		bypass,	32 MHz	143	TBD	TBD	TBD	111	TBD	TBD	TBD	
	Supply current in	PLL on	24 MHz	81	TBD	TBD	TBD	86	TBD	TBD	TBD	
	Run or	HSE bypass, PLL off	8 MHz	1.0	TBD	TBD	TBD	1.8	TBD	TBD	TBD	
I _{DDA}	Sleep mode,		1 MHz	1.0	TBD	TBD	TBD	1.8	TBD	TBD	TBD	μΑ
	code executing		48 MHz	229	TBD	TBD	TBD	242	TBD	TBD	TBD	
	from Flash	HSI clock, PLL on	32 MHz	173	TBD	TBD	TBD	191	TBD	TBD	TBD	
or RAM		24 MHz	151	TBD	TBD	TBD	166	TBD	TBD	TBD		
		HSI clock, PLL off	8 MHz	70	TBD	TBD	TBD	82	TBD	TBD	TBD	

Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

Table 22. Typical and maximum consumption in Stop mode

			Typ @V _{DDA} (V _{DD} = 1.8 V)							Max			
Symbol	Paramete r	Conditions	= 1.8 V	= 2.0 V	= 2.4 V	= 2.7 V	= 3.0 V	= 3.3 V	= 3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Uni t
I _{DD}	Supply					0.4				TBD	TBD	TBD	_
I _{DDA}	current in Stop mode	All oscillators OFF	0.8	0.8	0.8	0.9	0.9	1.0	1.1	TBD	TBD	TBD	μΑ

^{2.} Data based on characterization results, not tested in production unless otherwise specified.

		• •							וחם				
				Typ @ V _{BAT}						Max ⁽¹⁾			
Symbol	Parameter	Conditions	= 1.65 V	= 1.8 V	= 2.4 V	= 2.7 V	= 3.3 V	= 3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
I _{DD-VBAT} do	RTC domain	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.47	0.49	0.59	0.65	0.80	0.91	1.0	1.3	1.7	μA	
	supply current	pply LSE & RTC ON; "Xtal		0.79	0.88	0.98	1.13	1.21	1.3	1.6	2.1	μΑ	

Table 23. Typical and maximum current consumption from the V_{BAT} supply

Typical current consumption

The MCU is placed under the following conditions:

- $V_{DD} = V_{DDA} = 1.8 \text{ V}$
- All I/O pins are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

^{1.} Data based on characterization results, not tested in production.

Table 24. Typical current consumption, code executing from Flash, running from HSE 8 MHz crystal

Symbol	Parameter	f		sumption in mode		sumption in mode	Unit	
Symbol	raiametei	f _{HCLK}	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Oilit	
		48 MHz	18.5	11.6	10.8	2.6		
			36 MHz	14.1	8.9	8.2	2.0	
		32 MHz	12.7	8.1	7.3	1.8		
	Current	24 MHz	9.7	6.2	5.6	1.4		
I _{DD}	consumption	16 MHz	6.7	4.3	3.9	1.1	mA	
DD	from V _{DD} supply	8 MHz	3.4	2.3	1.9	0.6	шА	
	supply	4 MHz	2.1	1.4	1.3	0.5		
		2 MHz	1.3	0.9	0.9	0.5		
		1 MHz	0.9	0.7	0.7	0.4		
		500 kHz	0.7	0.6	0.6	0.4		
		48 MHz		13	36			
		36 MHz		1(05			
		32 MHz		9	6			
	Current	24 MHz		7	6			
I	consumption	16 MHz		5	6			
I _{DDA}	from V _{DDA} supply	8 MHz		-	1		μA	
	Зирріу	4 MHz			1			
		2 MHz			1			
		1 MHz			1			
		500 kHz			1			

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 43: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 26: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DDIOx} is the I/O supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT} + C_{S}$

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Table 25. Switching output I/O current consumption

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			2 MHz	0.09	
			4 MHz	0.17	
		$V_{DDIOx} = 1.8 V$ $C_{EXT} = 0 pF$	8 MHz	0.34	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	0.79	
		IIVI EXI G	36 MHz	1.50	
			48 MHz	2.06	
			2 MHz	0.13	
			4 MHz	0.26	
		$V_{DDIOx} = 1.8 \text{ V}$	8 MHz	0.50	
		$C_{EXT} = 10 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	1.18	
		IIVI EXI G	36 MHz	2.27	
	I/O current		48 MHz	3.03	
1.			2 MHz	0.18	mA
I _{SW}	consumption	$V_{DDIOx} = 1.8 V$ $C_{EXT} = 22 pF$	4 MHz	0.36	шА
			8 MHz	0.69	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	1.60	
			36 MHz	3.27	
			2 MHz	0.23	
		V _{DDIOx} = 1.8 V	4 MHz	0.45	
		$C_{EXT} = 33 pF$	8 MHz	0.87	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	2.0	
			36 MHz	3.7	
			2 MHz	0.29	
		$V_{DDIOx} = 1.8 V$ $C_{EXT} = 47 pF$	4 MHz	0.55	
		$C_{EXT} = 47 \text{ pr}$ $C = C_{INT} + C_{EXT} + C_{S}$	8 MHz	1.09	
		IIII EXT	18 MHz	2.43	

^{1.} $C_S = 5 pF$ (estimated value).

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 26*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 14: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 26*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

Table 26. Peripheral current consumption

Peripheral		Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	3.8	
	DMA1	6.3	
	SRAM	0.7	
	Flash interface	15.2	
AHB	CRC	1.61	A /NALL=
АПБ	GPIOA	9.4	μ A /MHz
	GPIOB	11.6	
	GPIOC	1.9	
	GPIOF	0.8	
	All AHB peripherals	47.5	

Table 26. Peripheral current consumption (continued)

	Peripheral	Typical consumption at 25 °C	Unit
	APB-Bridge (2)	2.6	
	SYSCFG	1.7	
	ADC ⁽³⁾	4.2	
	TIM1	17.1	
	SPI1	9.6	
	USART1	17.4	
	TIM16	8.2	
APB	TIM17	8.0	A /N AL I =
APD	DBG (MCU Debug Support)	0.5	μA/MHz
	TIM2	17.4	
	TIM3	12.8	
	TIM14	6.0	
	WWDG	1.5	
	I2C1	5.1	
	PWR	1.2	
	All APB peripherals	110.9	

^{1.} The BusMatrix automatically is active when at least one master is ON (CPU or DMA1).

^{2.} The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.

^{3.} The power consumption of the analog part (I_{DDA}) of peripherals such as ADC is not included. Refer to the tables of characteristics in the subsequent sections.

6.3.5 Wakeup time from low-power mode

The wakeup times given in *Table 27* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 27. Low-power mode wakeup timings

Symbol	Parameter		V _{DDA}	Max	Unit
	Farameter	= 1.8 V	= 3.3 V	IVIAX	Unit
t _{WUSTOP}	Wakeup from Stop mode	3.5	2.8	5.3	μs
t _{WUSLEEP}	Wakeup from Sleep mode	4 SYSCLK cycles		-	μs

6.3.6 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

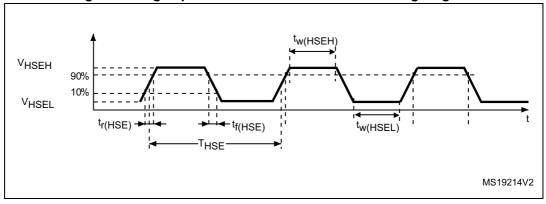

The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 12: High-speed external clock source AC timing diagram.

Table 28. High-speed external user clock characteristics

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V_{DDIOx}	٧
V _{HSEL}	OSC_IN input pin low level voltage	V_{SS}	ı	0.3 V _{DDIOx}	V
t _{w(HSEH)}	OSC_IN high or low time	15	ı	-	ns
t _{r(HSE)}	OSC_IN rise or fall time	-	-	20	115

^{1.} Guaranteed by design, not tested in production.

Figure 12. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

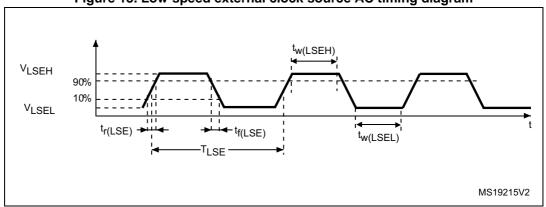

The external clock signal has to respect the I/O characteristics in *Section 6.3.13*. However, the recommended clock input waveform is shown in *Figure 13*.

Table 29. Low-speed external user clock characteristics

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V_{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	V_{SS}	ı	0.3 V _{DDIOx}	V
$\begin{matrix} t_{w(\text{LSEH})} \\ t_{w(\text{LSEL})} \end{matrix}$	OSC32_IN high or low time	450	-	-	ns
t _{r(LSE)}	OSC32_IN rise or fall time	-	-	50	115

^{1.} Guaranteed by design, not tested in production.

Figure 13. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 30*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency		4	8	32	MHz
R_{F}	Feedback resistor		-	200	-	kΩ
		During startup ⁽³⁾	-		8.5	
		$V_{DD} = 1.8 \text{ V},$ $Rm = 30 \ \Omega,$ $CL = 10 \text{ pF} @ 8 \text{ MHz}$	-	0.4	-	
	HSE current consumption	V_{DD} = 1.8 V, Rm = 45 Ω , CL = 10 pF@8 MHz	$Rm = 45\;\Omega, \qquad \qquad - \qquad 0$		-	
I _{DD}		$V_{DD} = 1.8 \text{ V},$ $Rm = 30 \ \Omega,$ $CL = 5 \text{ pF@32 MHz}$	-	0.8	-	mA
		$V_{DD} = 1.8 \text{ V},$ $Rm = 30 \ \Omega,$ $CL = 10 \text{ pF} @ 32 \text{ MHz}$	-	1	-	
		$V_{DD} = 1.8 \text{ V},$ $Rm = 30 \Omega,$ $CL = 20 \text{ pF}@32 \text{ MHz}$	-	1.5	-	
g _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 30. HSE oscillator characteristics

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 14*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

^{1.} Resonator characteristics given by the crystal/ceramic resonator manufacturer.

^{2.} Guaranteed by design, not tested in production.

^{3.} This consumption level occurs during the first 2/3 of the $t_{\text{SU(HSE)}}$ startup time

^{4.} t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

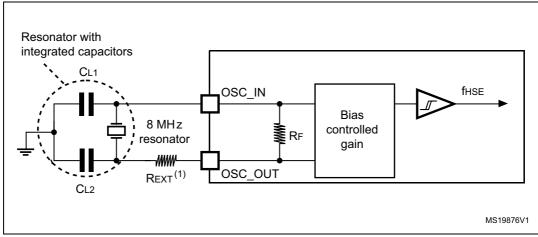


Figure 14. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 31*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
		LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9		
	LSE ourrent concumption	LSEDRV[1:0]= 01 medium low driving capability	-	-	1		
I _{DD}	LSE current consumption	LSEDRV[1:0] = 10 medium high driving capability	-	-	1.3	μА	
		LSEDRV[1:0]=11 higher driving capability	-	-	1.6		
	Oscillator transconductance	LSEDRV[1:0]=00 lower driving capability	5	-	-		
g .		LSEDRV[1:0]= 01 medium low driving capability	8	-	-	۸ /\ /	
9 _m		LSEDRV[1:0] = 10 medium high driving capability	15	-	-	- μ Α/V	
		LSEDRV[1:0]=11 higher driving capability	25	-	-		
t _{SU(LSE)} (3)	Startup time	V _{DDIOx} is stabilized	-	2	-	s	

Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

^{2.} Guaranteed by design, not tested in production.

t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

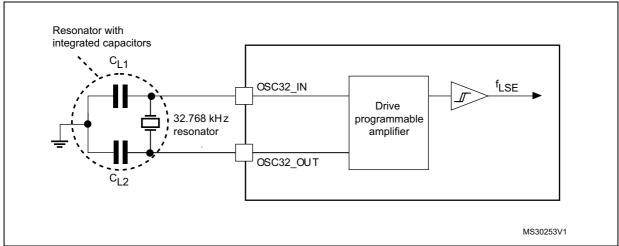


Figure 15. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.7 Internal clock source characteristics

The parameters given in *Table 32* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI) RC oscillator

Table 32. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency		-	8	-	MHz
TRIM	HSI user trimming step		-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%
	Accuracy of the HSI oscillator (factory calibrated)	$T_A = -40$ to 105 °C	-3.8 ⁽³⁾	-	4.6 ⁽³⁾	%
400		T _A = -10 to 85 °C	-2.9 ⁽³⁾	-	2.9 ⁽³⁾	%
ACCHSI		T _A = 0 to 70 °C	-2.3 ⁽³⁾	-	2.2 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI)}	HSI oscillator startup time		1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power consumption		-	80	100 ⁽²⁾	μΑ

- 1. $V_{DDA} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified.
- 2. Guaranteed by design, not tested in production.
- 3. Data based on characterization results, not tested in production.

Figure 16. HSI oscillator accuracy characterization results MAX - MIN $T_A[^{\circ}C]$ 0% 100 120 -20 0 20 40 60 80 -1% -2% -3% -4% MS30985V3

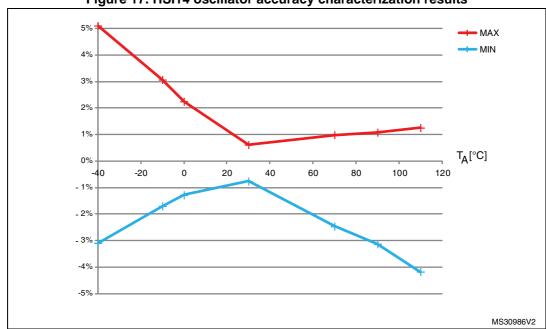

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Table 33. HSI14 oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency		-	14	-	MHz
TRIM	HSI14 user-trimming step		-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%
	Accuracy of the HSI14 oscillator (factory calibrated)	$T_A = -40 \text{ to } 105 ^{\circ}\text{C}$	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%
400		$T_A = -10 \text{ to } 85 ^{\circ}\text{C}$	$-3.2^{(3)}$	-	3.1 ⁽³⁾	%
ACC _{HSI14}		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI14)}	HSI14 oscillator startup time		1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI14)}	HSI14 oscillator power consumption		-	100	150 ⁽²⁾	μΑ

^{1.} V_{DDA} = 3.3 V, T_{A} = -40 to 105 °C unless otherwise specified.

Figure 17. HSI14 oscillator accuracy characterization results

^{2.} Guaranteed by design, not tested in production.

^{3.} Data based on characterization results, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 34. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μΑ

^{1.} V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

6.3.8 PLL characteristics

The parameters given in *Table 35* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 35. PLL characteristics

Symbol	Parameter		Unit		
		Min	Тур	Max	Unit
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs
Jitter _{PLL}	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps

Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

^{2.} Guaranteed by design, not tested in production.

^{2.} Guaranteed by design, not tested in production.

6.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Table 36. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	40	53.5	60	μs
t _{ERASE}	Page (1 KB) erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20	-	40	ms
_	Supply current	Write mode	-	-	10	mA
I _{DD} Supply current		Erase mode	-	-	12	mA

^{1.} Guaranteed by design, not tested in production.

Table 37. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

^{1.} Data based on characterization results, not tested in production.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 38*. They are based on the EMS levels and classes defined in application note AN1709.

^{2.} Cycling performed over the whole temperature range.

	Table 30. LIVIS CI	iai acteristics	
Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 1.8 V, LQFP48, T_A = +25 °C, f_{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	V _{DD} = 1.8 V, LQFP48, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Table 38. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Table 39. EMI characteristics

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol 1 arameter	Conditions	frequency band	8/48 MHz	Offic	
	V -19VT -25°C	0.1 to 30 MHz	-1		
c	Peak level	V _{DD} = 1.8 V, T _A = 25 °C, LQFP48 package	30 to 130 MHz	21	dΒμV
	reak level	compliant with	130 MHz to 1 GHz	27	
	IEC 61967-2	EMI Level	4	-	

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

			_			
Symbol	Ratings	Ratings Conditions Packages		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C, conforming to JESD22-A114	All	2	2000	٧
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	All	C4	500	V

Table 40. ESD absolute maximum ratings

Static latch-up

Symbol

LU

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Parameter Conditions Class

II level A

 $T_A = +105$ °C conforming to JESD78A

Table 41. Electrical sensitivities

6.3.12 I/O current injection characteristics

Static latch-up class

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

^{1.} Data based on characterization results, not tested in production.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 42.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Description	Func suscep	tional otibility	Unit
	Description	Negative injection	Positive injection	Oilit
	Injected current on BOOT0	-0	NA	
I _{INJ}	Injected current on all FT, FTf and POR pins	- 5	NA	mA
	Injected current on all TTa, TC and RESET pins	- 5	+5	

Table 42. I/O current injection susceptibility

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under the conditions summarized in *Table 17: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	TC and TTa I/O	-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾		
	Low lovel input	FT and FTf I/O	-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾	
V_{IL}	V _{IL} Low level input voltage	воото	-	-	0.3 V _{DDIOx} -0.3 ⁽¹⁾	V
		All I/Os except BOOT0 pin	-	-	0.3 V _{DDIOx}	
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-	
	High lovel input	FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-	
. V	High level input voltage	воото	0.2 V _{DDIOx} +0.95 ⁽¹⁾	-	-	V
		All I/Os except BOOT0 pin	0.7 V _{DDIOx}	-	-	

Table 43. I/O static characteristics

Table 43. I/O static characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		TC and TTa I/O	-	200 ⁽¹⁾	-	
V _{hys} Schmitt trigger hysteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	mV	
	воото	-	300 ⁽¹⁾	-		
		TC, FT and FTf I/O TTa in digital mode $V_{SS} \leq V_{IN} \leq V_{DDIOx}$	-	-	± 0.1	
Input leakage	Input leakage current ⁽²⁾	TTa in digital mode $V_{DDIOx} \le V_{IN} \le V_{DDA}$	-	-	1	μΑ
	Current	TTa in analog mode $V_{SS} \le V_{IN} \le V_{DDA}$	-	-	± 0.2	
		FT and FTf I/O $^{(3)}$ $V_{DDIOx} \le V_{IN} \le 5 V$	-	-	10	
R _{PU}	Weak pull-up equivalent resistor	$V_{IN} = V_{SS}$	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁴⁾	$V_{IN} = V_{DDIOx}$	25	40	55	kΩ
C _{IO}	I/O pin capacitance		-	5	-	pF

^{1.} Data based on design simulation only. Not tested in production.

^{2.} The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 42:* I/O current injection susceptibility.

^{3.} To sustain a voltage higher than $V_{DDIOx} + 0.3 V$, the internal pull-up/pull-down resistors must be disabled.

^{4.} Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 18* for standard I/Os, and in *Figure 19* for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production.

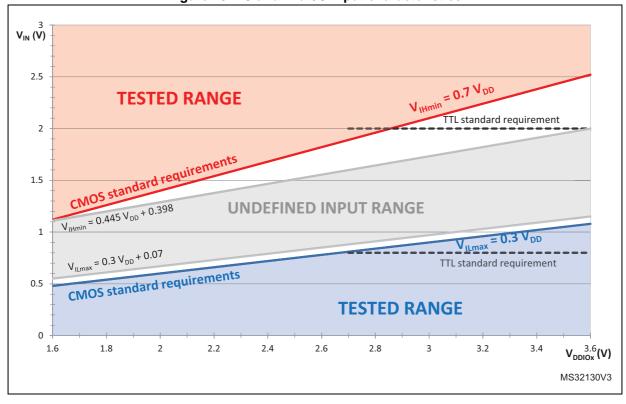


Figure 18. TC and TTa I/O input characteristics

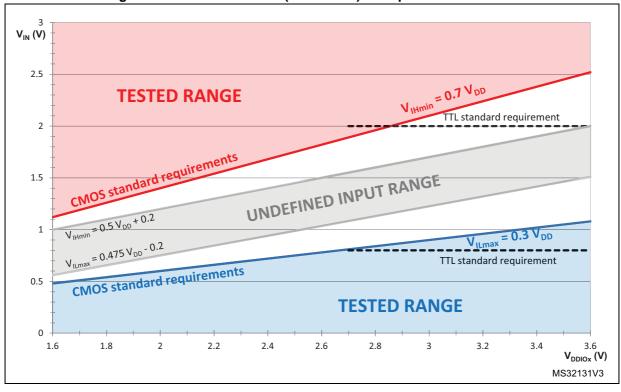


Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/-20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 14: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see Table 14: Voltage characteristics).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Table 44. Output voltage characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	II _{IO} l = 4 mA	-	0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	11 ₁₀ 1 = 4 111A	V _{DDIOx} -0.4	-	V
V _{OLFm+} ⁽³⁾	Output low level voltage for an FTf I/O pin in Fm+ mode	I _{IO} = 10 mA	-	0.4	V

The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 14:* Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI
 IO.

- 2. Data based on characterization results. Not tested in production.
- 3. Data based on design simulation only. Not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 20* and *Table 45*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 45. I/O AC characteristics⁽¹⁾⁽²⁾

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	(3)		Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz
x0	t _{f(IO)out}	Output fall time	$C_{L} = 50 \text{ pF}$	-	125	no
	t _{r(IO)out}	Output rise time		-	125	ns
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz
01	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	62.5	no
	t _{r(IO)out}	Output rise time		-	62.5	ns
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz
11	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	25	no
	t _{r(IO)out}	Output rise time		-	25	ns
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	0.5	MHz
configuration	t _{f(IO)out}	Output fall time	CL = 50 pF	-	16	no
(4)	t _{r(IO)out}	Output rise time		-	44	ns
	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10	-	ns

The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

^{2.} Guaranteed by design, not tested in production.

^{3.} The maximum frequency is defined in Figure 20.

When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

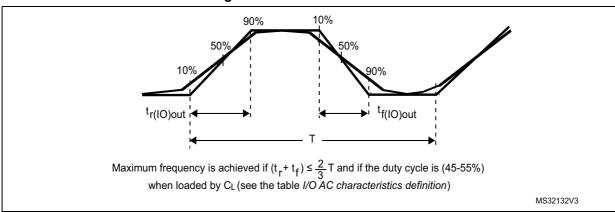


Figure 20. I/O AC characteristics definition

6.3.14 NRST and NPOR pin characteristics

NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} .

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage		-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage		0.445 V _{DD} +0.398 ⁽¹⁾	-	-	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis		-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse		-	-	100 ⁽¹⁾	ns
V _{NF(NRST)}	NRST input not filtered pulse		700 ⁽¹⁾	-	-	ns

Table 46. NRST pin characteristics

^{1.} Data based on design simulation only. Not tested in production.

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

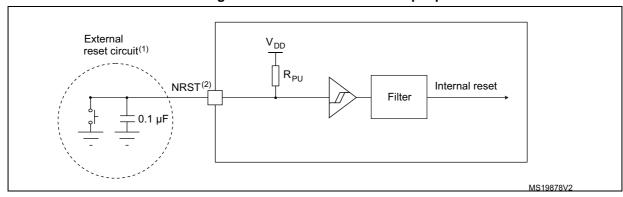


Figure 21. Recommended NRST pin protection

- 1. The external capacitor protects the device against parasitic resets.
- 2. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in *Table 46: NRST pin characteristics*. Otherwise the reset will not be taken into account by the device.

NPOR pin characteristics

The NPOR pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor to the V_{DDA} , R_{PU} .

Unless otherwise specified, the parameters given in *Table 47* below are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NPOR)}	NPOR Input low level voltage		-		0.475 V _{DDA} - 0.2 ⁽¹⁾	
V _{IH(NPOR)}	NPOR Input high level voltage		0.5 V _{DDA} + 0.2 ⁽¹⁾		-	V
V _{hys(NPOR)}	NPOR Schmitt trigger voltage hysteresis		-	100 ⁽¹⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ

Table 47. NPOR pin characteristics

6.3.15 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 48* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 17: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

^{1.} Guaranteed by design, not tested in production.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

Table 48. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage for ADC ON		2.4	-	3.6	V
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	-	0.9	-	mA
f _{ADC}	ADC clock frequency		0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate		0.05	-	1	MHz
£ (2)	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
f _{TRIG} ⁽²⁾	External ingger frequency		-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range		0	-	V_{DDA}	٧
R _{AIN} ⁽²⁾	External input impedance	See Equation 1 and Table 49 for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance		-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor		1	-	8	pF
+ (2)	Calibration time	f _{ADC} = 14 MHz	5.9			μs
t _{CAL} ⁽²⁾	Cambration time			83		1/f _{ADC}
	ADC_DR register write latency	ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	
W _{LATENCY} ⁽²⁾		ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$	0.196			μs
		$f_{ADC} = f_{PCLK}/2$		5.5		1/f _{PCLK}
t _{latr} (2)	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$		0.219		μs
		$f_{ADC} = f_{PCLK}/4$		10.5		1/f _{PCLK}
		$f_{ADC} = f_{HSI14} = 14 \text{ MHz}$	0.188	-	0.259	μs
Jitter _{ADC}	ADC jitter on trigger conversion	$f_{ADC} = f_{HSI14}$	-	1	-	1/f _{HSI14}
t _S ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
	Camping unic		1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time		0	0	1	μs
(2)	Total conversion time	$f_{ADC} = 14 \text{ MHz}$	1	-	18	μs
t _{CONV} ⁽²⁾	(including sampling time)		14 to 252 (t _S fo successive app			1/f _{ADC}

^{1.} During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μA on I_{DDA} and 60 μA on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

$$\begin{aligned} & \text{Equation 1: R}_{\text{AIN}} \underset{T_{S}}{\text{max formula}} \\ & \text{R}_{\text{AIN}} < \underset{f_{\text{ADC}} \times C_{\text{ADC}} \times \text{In}(2^{N+2})}{\text{f}_{\text{ADC}}} - \text{R}_{\text{ADC}} \end{aligned}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 49. R_{AIN} max for $f_{ADC} = 14$ MHz

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

^{1.} Guaranteed by design, not tested in production.

Table 50. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±2	
EO	Offset error	f _{PCLK} = 48 MHz,	±1	±1.5	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ V_{DDA} = 3 V to 3.6 V	±0.5	±1.5	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ V_{DDA} = 2.7 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	T _A = -40 to 105 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f_{PCLK} = 48 MHz, f_{ADC} = 14 MHz, R_{AIN} < 10 k Ω V_{DDA} = 2.4 V to 3.6 V T_A = 25 °C	±1.9	±2.8	
EG	Gain error		±2.8	±3	LSB
ED	Differential linearity error		±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	

^{1.} ADC DC accuracy values are measured after internal calibration.

- ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
 pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
 input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
 negative current.
 - Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.13 does not affect the ADC accuracy.
- 3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.

Figure 22. ADC accuracy characteristics

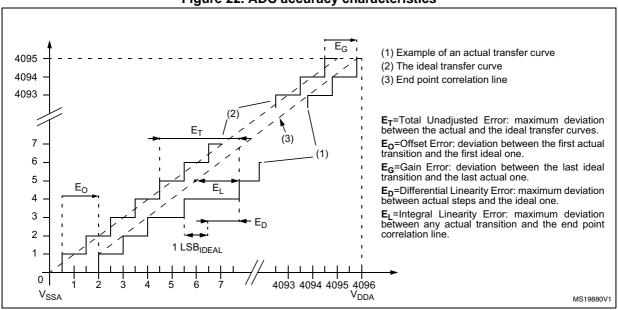
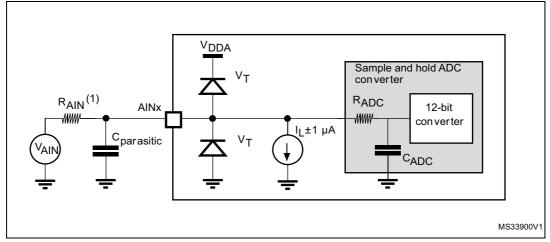



Figure 23. Typical connection diagram using the ADC

- Refer to Table 48: ADC characteristics for the values of R_{AIN}, R_{ADC} and C_{ADC}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 10: Power supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.16 Temperature sensor characteristics

Table 51. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	/ ₃₀ Voltage at 30 °C (± 5 °C) ⁽²⁾		1.43	1.52	V
t _{START} ⁽¹⁾	t _{START} ⁽¹⁾ Startup time t _{S_temp} ⁽¹⁾ ADC sampling time when reading the temperature		-	10	μs
t _{S_temp} ⁽¹⁾			-	-	μs

^{1.} Guaranteed by design, not tested in production.

6.3.17 V_{BAT} monitoring characteristics

Table 52. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}		50	-	kΩ
Q	Ratio on V _{BAT} measurement		2	-	
Er ⁽¹⁾	Error on Q		-	+1	%
t _{S_vbat} (1)	ADC sampling time when reading the V _{BAT}	4	-	-	μs

^{1.} Guaranteed by design, not tested in production.

6.3.18 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 53. TIMx characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t(TIND)	Timer resolution time		1	-	t _{TIMxCLK}
^t res(TIM)	Timer resolution time	f _{TIMxCLK} = 48 MHz	20.8	-	ns
f	Timer external clock		0	f _{TIMxCLK} /2	MHz
†EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	0	24	MHz

Measured at V_{DDA} = 3.3 V ± 10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

Symbol	Parameter	Conditions	Min	Max	Unit	
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit	
I ICS IIM		TIM2	-	32	Dit	
toouween	16-bit counter clock period		1	65536	t _{TIMxCLK}	
^I COUNTER		f _{TIMxCLK} = 48 MHz	0.0208	1365	μs	
TMAY COUNT	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}	
t _{MAX_COUNT}		f _{TIMxCLK} = 48 MHz	-	89.48	s	

Table 53. TIMx characteristics (continued)

Table 54. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit	
/4	0	0.1	409.6		
/8	1	0.2	819.2		
/16	2	0.4	1638.4		
/32	3	0.8	3276.8	ms	
/64	4	1.6	6553.6		
/128	5	3.2	13107.2		
/256	6 or 7	6.4	26214.4		

These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 55. WWDG min/max timeout value at 48 MHz (PCLK)

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	ma
4	2	0.3413	21.8453	ms
8	3	0.6826	43.6906	

6.3.19 Communication interfaces

I²C interface characteristics

The I2C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Table 56. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
+	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

- 1. Guaranteed by design, not tested in production.
- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{\text{AF}(\text{max})}$ are not filtered

SPI/I²S characteristics

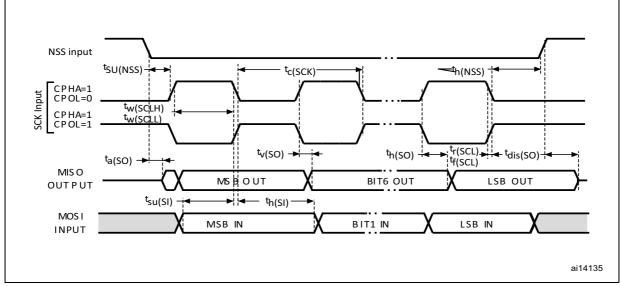
Unless otherwise specified, the parameters given in *Table 57* for SPI or in *Table 58* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 17: General operating conditions*.

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Table 57. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPI clock frequency	Master mode	-	18	MHz
1/t _{c(SCK)} SPI clock frequency		Slave mode	-	18	IVII IZ
t _{r(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-	
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-	
t _{w(SCKH)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1	
t _{su(MI)}	Data input setup time	Master mode	4	-	
t _{su(SI)}		Slave mode	5	-	
t _{h(MI)}		Master mode	4	-	
t _{h(SI)}	Data input hold time	Slave mode	5	-	ns
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk	
t _{dis(SO)} (3)	Data output disable time	Slave mode	0	18	
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6	
t _{h(SO)}	Data autaut hald time	Slave mode (after enable edge)	11.5	-	
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	2	-	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%

^{1.} Data based on characterization results, not tested in production.


^{2.} Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

^{3.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

NSS input -tc(SCK)th(NSS) tSU(NSS) CPHA=0 CPOL=0 tw(SCKH)tw(SCKL) CPHA=0 CPOL=1 tv(SO) tr(SCK)tf(SCK)dis(SO) ta(SO) th(SO)_ MISO BIT6 OUT MSB O UT LSB OUT OUTPUT tsu(SI)→ MOSI MSB IN BIT1 IN LSB IN INPUT th(SI) ai14134c

Figure 24. SPI timing diagram - slave mode and CPHA = 0

^{1.} Measurement points are done at CMOS levels: 0.3 $V_{\rm DD}$ and 0.7 $V_{\rm DD}$.

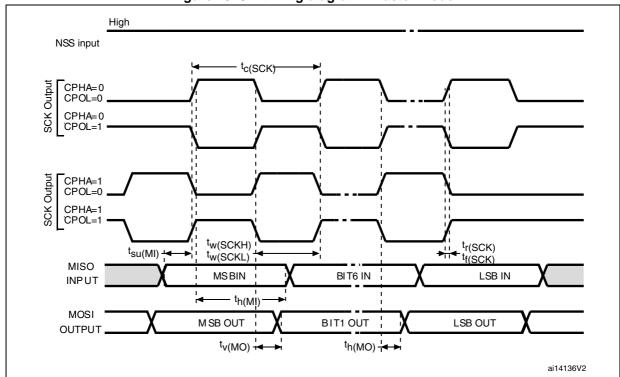


Figure 26. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 $V_{\rm DD}$ and 0.7 $V_{\rm DD}$.

Table 58. I²S characteristics⁽¹⁾

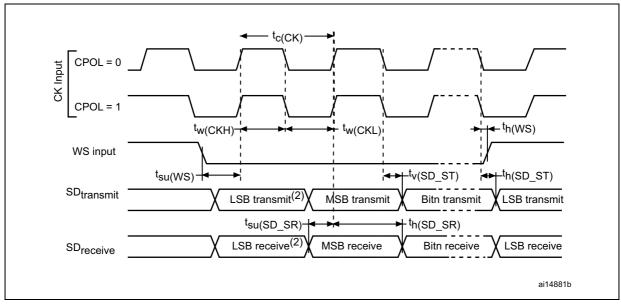

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CK}	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.597	1.601	MHz
1/t _{c(CK)}		Slave mode	0	6.5	
t _{r(CK)}	I ² S clock rise time	Capacitive load C _L = 15 pF	-	10	
t _{f(CK)}	I ² S clock fall time		-	12	
t _{w(CKH)}	I2S clock high time	Master f _{PCLK} = 16 MHz, audio frequency = 48 kHz	306	-	
t _{w(CKL)}	I2S clock low time		312	-	ns
t _{v(WS)}	WS valid time	Master mode	2	-	
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	7	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
DuCy(SCK)	I2S slave input clock duty cycle	Slave mode	25	75	%

Table 58.	I ² S characteristics ⁽¹⁾ (continued)	

Symbol	Parameter	Conditions	Min	Max	Unit
t _{su(SD_MR)}	Data input setup time	Master receiver	6	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	2	-	
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-	
t _{h(SD_SR)} (2)	Data input noid time	Slave receiver	0.5	-	ne
t _{v(SD_ST)} ⁽²⁾	Data output valid time	Slave transmitter (after enable edge)	-		ns
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	13	-	
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter (after enable edge)	-	4	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	0	-	

- 1. Data based on design simulation and/or characterization results, not tested in production.
- 2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

Figure 27. I2S slave timing diagram (Philips protocol)

- 1. Measurement points are done at CMOS levels: 0.3 \times V_{DDIOx} and 0.7 \times V_{DDIOx}
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

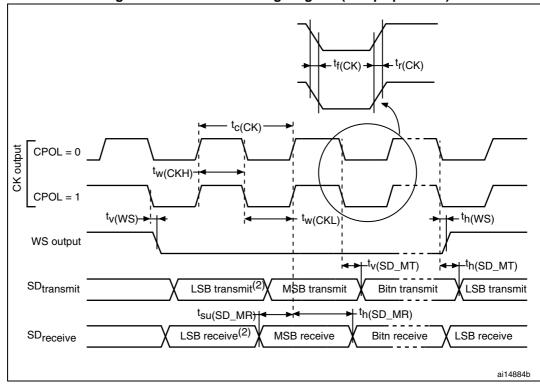


Figure 28. I2S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

7 Package characteristics

7.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

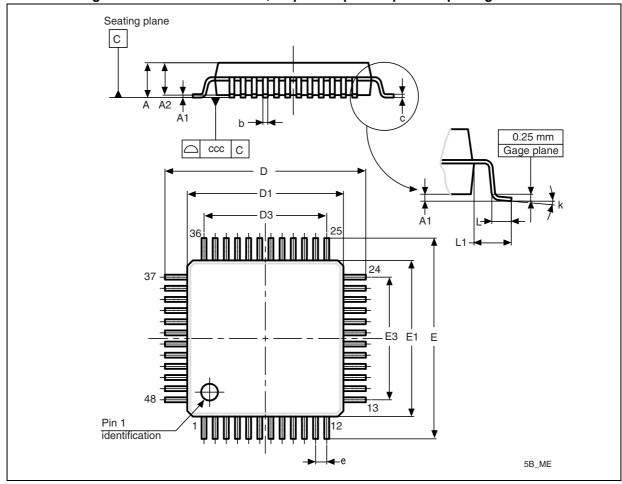


Figure 29. LQFP48 - 7 x 7 mm, 48-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 59. LQFP48 - 7 x 7 mm, 48-pin low-profile quad flat package mechanical data

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
Α			1.600			0.0630	
A1	0.050		0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090		0.200	0.0035		0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3		5.500			0.2165		
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	

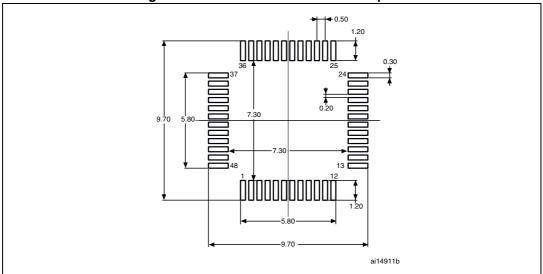


Table 59. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data (continued)

Cumb al	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
E3		5.500			0.2165	
е		0.500			0.0197	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0°	3.5°	7°	0°	3.5°	7°
ccc		0.080			0.0031	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 30. LQFP48 recommended footprint

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

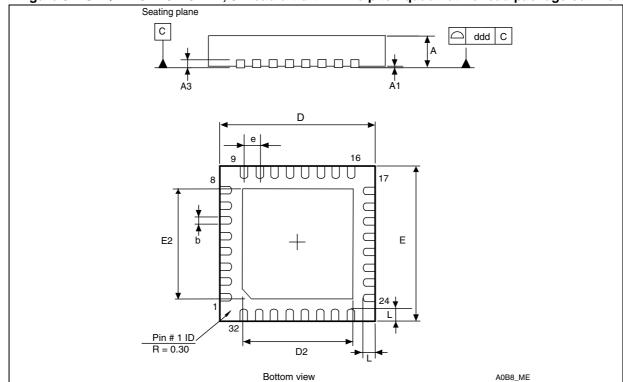


Figure 31. UFQFPN32 - 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package outline

- 1. Drawing is not to scale.
- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table 10: Pin definitions*.

Table 60. UFQFPN32 – 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package mechanical data

Dim		millimeters			inches ⁽¹⁾	
Dim.	Min	Тур	Max	Min	Тур	Max
Α	0.5	0.55	0.6	0.0197	0.0217	0.0236
A1	0.00	0.02	0.05	0	0.0008	0.0020
A3		0.152			0.006	
b	0.18	0.23	0.28	0.0071	0.0091	0.0110
D	4.90	5.00	5.10	0.1929	0.1969	0.2008
D2		3.50			0.1378	
E	4.90	5.00	5.10	0.1929	0.1969	0.2008
E2	3.40	3.50	3.60	0.1339	0.1378	0.1417
е		0.500			0.0197	
L	0.30	0.40	0.50	0.0118	0.0157	0.0197
ddd		0.08	•		0.0031	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

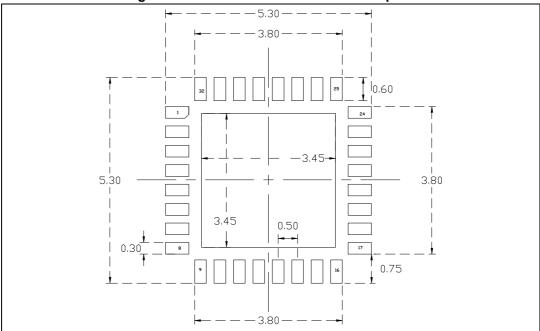


Figure 32. UFQFPN32 recommended footprint

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

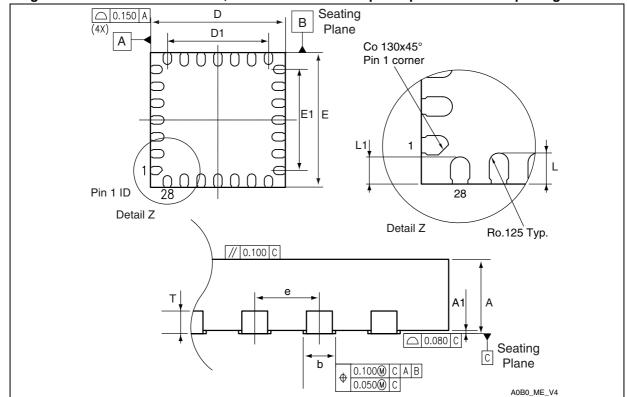


Figure 33. UFQFPN28 - 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package outline

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.
- 3. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.

Table 61. UFQFPN28 – 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package mechanical data

Complete		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.5	0.55	0.6	0.0197	0.0217	0.0236
A1	-0.05	0	0.05	-0.002	0	0.002
D	3.9	4	4.1	0.1535	0.1575	0.1614
D1	2.9	3	3.1	0.1142	0.1181	0.122
Е	3.9	4	4.1	0.1535	0.1575	0.1614
E1	2.9	3	3.1	0.1142	0.1181	0.122
L	0.3	0.4	0.5	0.0118	0.0157	0.0197
L1	0.25	0.35	0.45	0.0098	0.0138	0.0177
Т		0.152			0.006	
b	0.2	0.25	0.3	0.0079	0.0098	0.0118
е		0.5			0.0197	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

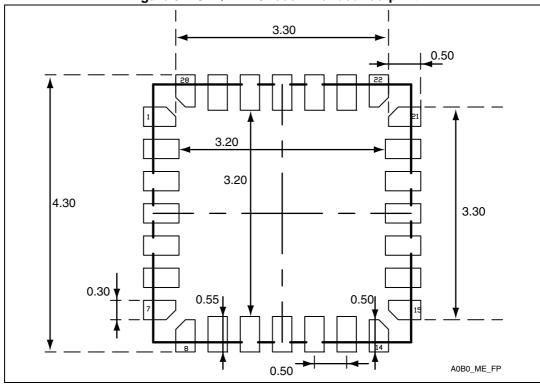


Figure 34. UFQFPN28 recommended footprint

- 1. Dimensions are in millimeters
- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.

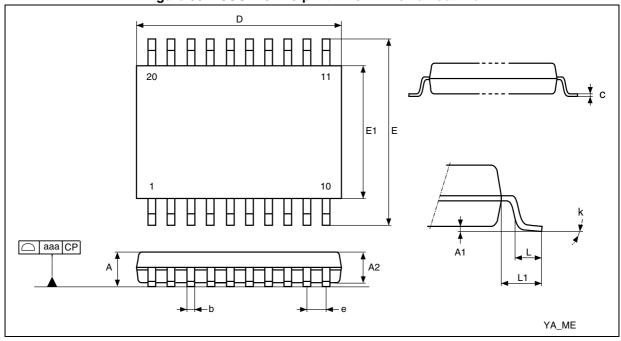


Figure 35. TSSOP20 - 20-pin thin shrink small outline

1. Drawing is not to scale.

Table 62. TSSOP20 - 20-pin thin shrink small outline package mechanical data

Cumahaal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	
Α			1.2			0.0472
A1	0.05		0.15	0.002		0.0059
A2	0.8	1	1.05	0.0315	0.0394	0.0413
b	0.19		0.3	0.0075		0.0118
С	0.09		0.2	0.0035		0.0079
D ⁽²⁾	6.4	6.5	6.6	0.252	0.2559	0.2598
Е	6.2	6.4	6.6	0.2441	0.252	0.2598
E1 ⁽³⁾	4.3	4.4	4.5	0.1693	0.1732	0.1772
е		0.65			0.0256	
L	0.45	0.6	0.75	0.0177	0.0236	0.0295
L1		1			0.0394	
k	0.0°		8.0°	0.0°		8.0°
aaa			0.1			0.0039

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

^{3.} Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per

Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

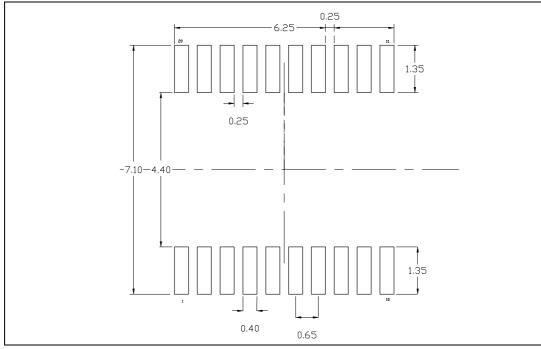


Figure 36. TSSOP20 recommended footprint

1. Dimensions are in millimeters.

7.2 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 17: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O} \max = \sum (V_{OL} \times I_{OL}) + \sum ((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
U	Thermal resistance junction-ambient UFQFPN32 - 5 × 5 mm	38	0000
Θ_{JA}	Thermal resistance junction-ambient UFQFPN28 - 4 × 4 mm	118	°C/W
	Thermal resistance junction-ambient TSSOP20	110	

Table 63. Package thermal characteristics

7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the microcontroller at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax}=80~^{\circ}C$ (measured according to JESD51-2), $I_{DDmax}=50~mA$, $V_{DD}=3.5~V$, maximum 20 I/Os used at the same time in output at low level with $I_{OL}=8~mA$, $V_{OL}=0.4~V$ and maximum 8 I/Os used at the same time in output at low level with $I_{OL}=20~mA$, $V_{OL}=1.3~V$

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax = 20} \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Using the values obtained in *Table 63* T_{Jmax} is calculated as follows:

For LQFP48, 55 °C/W

 $T_{\text{-Imax}} = 80 \, ^{\circ}\text{C} + (55 \, ^{\circ}\text{C/W} \times 447 \, \text{mW}) = 80 \, ^{\circ}\text{C} + 24.585 \, ^{\circ}\text{C} = 104.585 \, ^{\circ}\text{C}$

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C) see *Table 17:* General operating conditions on page 41.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering).

Note:

With this given $P_{Dmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7).$

Suffix 6: $T_{Amax} = T_{Jmax}$ - $(55^{\circ}\text{C/W} \times 447 \text{ mW}) = 105\text{-}24.585 = 80.415 ^{\circ}\text{C}$ Suffix 7: $T_{Amax} = T_{Jmax}$ - $(55^{\circ}\text{C/W} \times 447 \text{ mW}) = 125\text{-}24.585 = 100.415 ^{\circ}\text{C}$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 100 °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OI} = 8 mA, V_{OI} = 0.4 V

 $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$

 $P_{IOmax = 20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

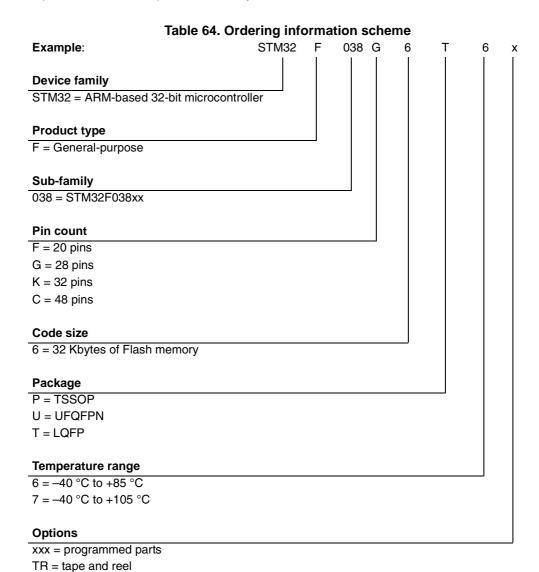
Thus: $P_{Dmax} = 134 \text{ mW}$

Using the values obtained in *Table 63* T_{Jmax} is calculated as follows:

For LQFP48. 55 °C/W

 $T_{Jmax} = 100 \text{ °C} + (55 \text{ °C/W} \times 134 \text{ mW}) = 100 \text{ °C} + 7.37 \text{ °C} = 107.37 \text{ °C}$

This is above the range of the suffix 6 version parts ($-40 < T_J < 105$ °C).


In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

57

STM32F038xx Part numbering

8 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Revision history STM32F038xx

9 Revision history

Table 65. Document revision history

Date	Revision	Changes
28-May-2014	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

