TR5-F40W

FPGA Development Kit

CONTENTS

CHAPTER 1	OVERVIEW	4
1.1 GENERAL	DESCRIPTION	4
1.2 Key Feat	TURES	4
1.3 Block D	IAGRAM	<i>6</i>
CHAPTER 2	BOARD COMPONENTS	9
2.1 Board O	VERVIEW	9
2.2 Configur	RATION, STATUS AND SETUP	10
2.3 GENERAL	USER INPUT/OUTPUT	
2.4 TEMPERA	TURE SENSOR AND FAN CONTROL	
2.5 CLOCK C	IRCUIT	18
2.6 RS422 SE	ERIAL PORT	20
2.7 FLASH N	MEMORY	21
2.8 SSRAM.		24
2.9 SPF+ POI	RTS	26
2.10 PCI EXE	PRESS	29
2.11 SATA		31
2.12 HSMC:	HIGH-SPEED MEZZANINE CARD	34
CHAPTER 3	SYSTEM BUILDER	42
3.1 Introdu	CTION	42
3.2 GENERAL	DESIGN FLOW	43
3.3 Using Sy	STEM BUILDER	44
CHAPTER 4	FLASH PROGRAMMING	51
4.1 CFI FLAS	SH MEMORY MAP	51
4.2 FPGA Co	ONFIGURE OPERATION	52
4.3 Flash Pr	ROGRAMMING WITH USERS DESIGN	52
4.4 RESTORE	FACTORY SETTINGS	54
CHAPTER 5	PROGRAMMABLE OSCILLATOR	56
5.1 OVERVIEV	w	56
5.2 Si570 Ex	AMPLE (RTL)	60

5.3 SI5/0 AN	ID CDCM PROGRAMMING (NIOS II)	68
CHAPTER 6	PCI EXPRESS REFERENCE DESIGN	73
6.1 PCI Expr	RESS SYSTEM INFRASTRUCTURE	73
6.2 FPGA PC	CI Express System Design	74
6.3 PC PCI E	Express System Design	78
6.4 FUNDAM	ENTAL COMMUNICATION	88
6.5 EXAMPLE	E 2: IMAGE PROCESS APPLICATION	93
ADDITIONAL	INFORMATION	98

Chapter 1

Overview |

This chapter provides an overview of the TR5-F40W Development Board and installation guide.

1.1 General Description

The Terasic TR5-F40W Stratix V GX FPGA Development Kit provides the ideal hardware platform for developing high-performance and high-bandwidth application. With a standard-height, half-length form-factor package, the TR5-F40W is designed for the most demanding high-end applications, empowered with the top-of-the-line Altera Stratix V GX, delivering the best system-level integration and flexibility in the industry.

The Stratix® V GX FPGA features 340K logic elements and integrated transceivers that transfer at a maximum of 12.5 Gbps, allowing the TR5-F40W to be fully compliant with version 3.0 of SATA, version 3.0 of the PCI Express standard, as well as allowing an ultra low-latency, straight connections to four external 10G SFP+ modules. Not relying on an external PHY will accelerate mainstream development of network applications enabling customers to deploy designs for a broad range of high-speed connectivity applications. An HSMC expansion port also allows users to connect custom daughter cards such as those found on cards.terasic.com. The feature-set of the TR5-F40W fully supports all high-intensity applications such as low-latency trading, cloud computing, high-performance computing, data acquisition, network processing, and signal processing.

1.2 Key Features

The following hardware is implemented on the TR5-F40W board:

- FPGA
 - o Altera Stratix® V GX FPGA (5SGXEA3K2F40C3)

- FPGA Configuration
 - On-Board USB Blaster II or JTAG header for FPGA programming
 - o Fast passive parallel (FPPx32) configuration via MAX II CPLD and flash memory
- General user input/output:
 - o 10 LEDs
 - o 4 push-buttons
 - o 4 slide switches
- On-Board Clock
 - o 50MHz Oscillator
 - o Programmable oscillators Si570 and CDCM61004
 - o SMA connector for external clock input / output
- Memory
 - o SSRAM
 - o FLASH
- Communication Ports
 - o Four SFP+ connectors
 - One SATA host port
 - One SATA device port
 - o PCI Express (PCIe) x8 edge connector
 - o One RS422 transceiver with RJ45 connector
 - One HSMC Connector
- System Monitor and Control
 - Temperature sensor
 - o Fan control
- Power
 - o PCI Express 6-pin power connector, 12V DC Input
 - o PCI Express edge connector power
- Mechanical Specification

o PCI Express standard-height and half-length

1.3 Block Diagram

Figure 1-1 shows the block diagram of the TR5-F40W board. To provide maximum flexibility for the users, all key components are connected with the Stratix V GX FPGA device. Thus, users can configure the FPGA to implement any system design.

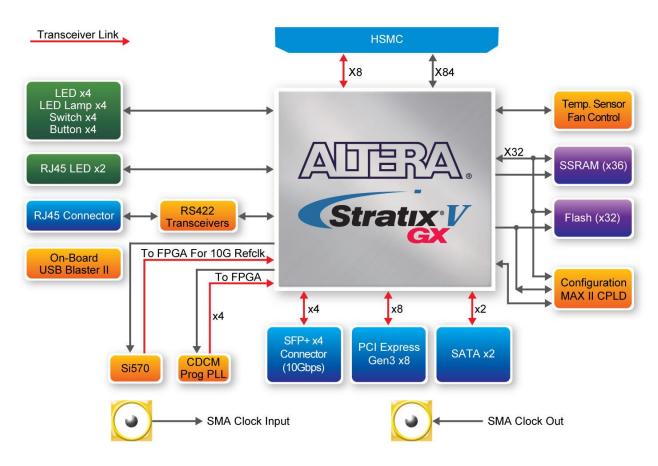


Figure 1-1 Block diagram of the TR5-F40W board

Stratix V GX FPGA

- 5SGXEA3K2F40C3
- 340,000 logic elements (LEs)
- 19-Mbits embedded memory
- 36 transceivers (12.5Gbps)

- 512 18-bit x 18-bit multipliers
- 256 27-bit x 27-bit DSP blocks
- 2 PCI Express hard IP blocks
- 696 user I/Os
- 174 full-duplex LVDS channels
- 24 phase locked loops (PLLs)

JTAG Header and FPGA Configuration

- On-board USB Blaster II or JTAG header for use with the Quartus II Programmer
- MAXII CPLD EPM2210 System Controller and Fast Passive Parallel (FPP) configuration

Memory devices

- 2MB SSRAM
- 256MB FLASH

General user I/O

- 10 user controllable LEDs
- 4 user push buttons
- 4 user slide switches

On-Board Clock

- 50MHz oscillator
- Programmable oscillators providing clock for 10G SFP+ transceiver
- Programmable oscillators providing clock for SATA, HSMC and 1G SFP+ transceiver
- 1 SMA connector for external clock output
- 1 SMA connector for external clock input

HSMC Connector

- Total of 8 pairs transceivers at data rate up to 12.5Gbps
- Total of 18 LVDS channels (also can be configured as single-end signals)
- Input and output clock
- JTAG Signals
- Adjustable I/O voltage 1.5V / 1.8V / 2.5V

Two Serial ATA ports

• SATA 3.0 standard at 6Gbps signaling rate

Four SFP+ ports

• Four SFP+ connector (10 Gbps+)

PCI Express x8 edge connector

- Support for PCIe Gen1/2/3
- Edge connector for PC motherboard with x8 or x16 PCI Express slot

Power Source

- PCI Express 6-pin DC 12V power
- PCI Express edge connector power

Chapter 2

Board Components

This chapter introduces all the important components on the TR5-F40W.

2.1 Board Overview

Figure 2-1 is the top and bottom view of the TR5-F40W development board. It depicts the layout of the board and indicates the location of the connectors and key components. Users can refer to this figure for relative location of the connectors and key components.

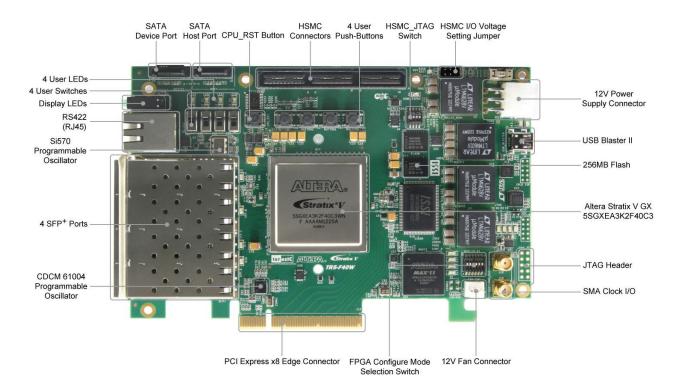


Figure 2-1 The FPGA Board (Top)

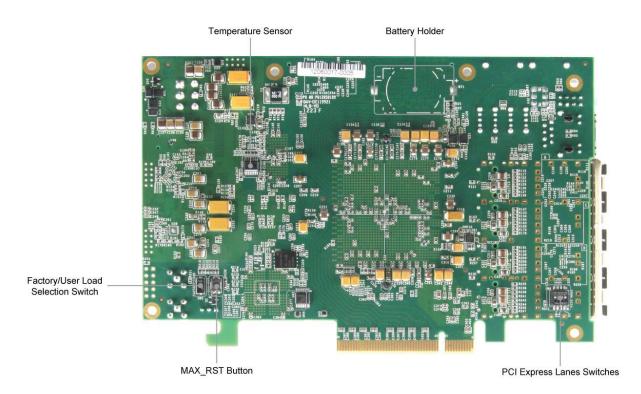


Figure 2-2 The FPGA Board (Bottom)

2.2 Configuration, Status and Setup

■ Configure

The FPGA board supports two configuration methods for the Stratix V FPGA:

- Configure the FPGA using the on-board USB-Blaster II.
- Flash memory configuration of the FPGA using stored images from the flash memory on power-up.

For programming via on-board USB-Blaster II, the following procedures show how to download a configuration bit stream into the Stratix V GX FPGA:

- Make sure that power is provided to the FPGA board
- Connect your PC to the FPGA board using a mini-USB cable and make sure the USB-Blaster II driver is installed on your PC.
- Launch Quartus II programmer and make sure the USB-Blaster II is detected.
- In Quartus II Programmer, add the configuration bit stream file (.sof), check the associated

"Program/Configure" item, and click "Start" to start FPGA programming.

■ Status LED

The FPGA Board development board includes board-specific status LEDs to indicate board status. Please refer to **Table 2-1** for the description of the LED indicator.

Table 2-1 Status LED

Board Reference	LED Name	Description
D7	12-V Power	Illuminates when 12-V power is active.
D6	3.3-V Power	Illuminates when 3.3-V power is active.
D25	HSMC Power	1.5-V : no Illuminates 1.8-V : Illuminates Green 2.5-V : Illuminates Red (Default)
D19	CONF DONE	Illuminates when the FPGA is successfully configured. Driven by the MAX II CPLD EPM2210 System Controller.
D15	Loading	Illuminates when the MAX II CPLD EPM2210 System Controller is actively configuring the FPGA. Driven by the MAX II CPLD EPM2210 System Controller with the Embedded Blaster CPLD.
D17	Error	Illuminates when the MAX II CPLD EPM2210 System Controller fails to configure the FPGA. Driven by the MAX II CPLD EPM2210 System Controller.
D18	PAGE	Illuminates when FPGA is configured by the factory configuration bit stream.

■ Setup HSMC I/O voltage

The FPGA I/O standards of the HSMC ports can be adjusted by configuring the header position (J3). Each port can be individually adjusted to 1.5V, 1.8V, 2.5V via jumpers on the top-right. **Figure 2-3** depicts the position of the jumpers and their associated I/O standards. Users can use 2-pin jumpers to configure the I/O standard by choosing the associated positions on the header. Please refer to **Table 2-2** for more details. Note: removing or mounting all of the jumpers will force an output of 1.5V, and will incur the risk of damaging your FPGA.

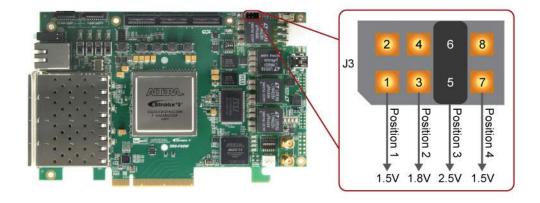


Figure 2-3 HSMC I/O Configuration Header

Table 2-2 HSMC IO Standard Select

Board Reference	Signal Name	Description	Default
J3.1 – J3.2	HSMC VCCIO 1.5V	Short : Select VCCIO = 1.5V output	Open
J3.3 – J3.4	HSMC VCCIO 1.8V	Short : Select VCCIO = 1.8V output	Open
J3.5 – J3.6	HSMC VCCIO 2.5V	Short : Select VCCIO = 2.5V output	Short
J3.7 – J3.8	HSMC VCCIO 1.5V	Short : Select VCCIO = 1.5V output	Open

■ Setup PCI Express Control DIP switch

The PCI Express Control DIP switch (SW8) is provided to enable or disable different configurations of the PCIe Connector. **Table 2-3** lists the switch controls and description.

Table 2-3 SW8 PCIe Control DIP Switch

Board Reference	Signal Name	Description	Default
SW8.1	PCIE_PRSNT2n_x1	On : Enable x1 presence detect Off : Disable x1 presence detect	Off
SW8.2	PCIE_PRSNT2n_x4	On : Enable x4 presence detect Off : Disable x4 presence detect	Off
SW8.3	PCIE_PRSNT2n_x8	On : Enable x8 presence detect Off : Disable x8 presence detect	On

■ Setup Configure Mode Control DIP switch

The Configure Mode Control DIP switch (SW7) is provided to specify the configuration mode of the FPGA. Because currently only one mode is supported, please set all positions as shown in Figure 2-4.

Figure 2-4 6-Position DIP switch for Configure Mode

■ Select Flash Image for Configuration

The Image Select DIP switch (SW5) is provided to specify the image for configuration of the FPGA. Setting SW5 to the top specifies the default factory image to be loaded, as shown in **Figure 2-5**. Setting SW5 to low specifies the TR5-F40W to load a user-defined image, as shown in **Figure 2-6**.

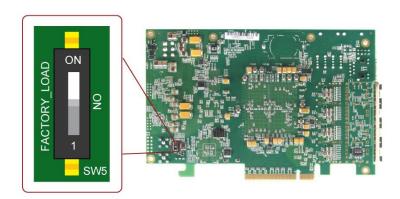


Figure 2-5 DIP switch for Image Select – Factory Image Load

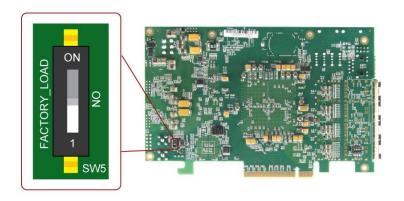


Figure 2-6 DIP switch for Image Select – User Image Load

■ Select JTAG Chain DIP Switch

Table 2-4 explains the configuration for SW6. SW6.1 enables/disables the USB Blaster. SW6.3 selects the JTAG chain. A more detailed explanation can be found in Chapter 2-12 JTAG Chain on HSMC.

Table 2-4 SW6 JTAG Chain DIP Switch

Board Reference	Signal Name	Description	Default
SW6.1	On-Board USB Blaster	On : Disable On-Board USB Blaster Off : Enable On-Board USB Blaster	Off
SW6.2	N/A	N/A	On
SW6.3	HSMC JTAG	On : Disable HSMC JTAG chain Off : Enable HSMC JTAG chain	On
SW6.4	N/A	N/A	On

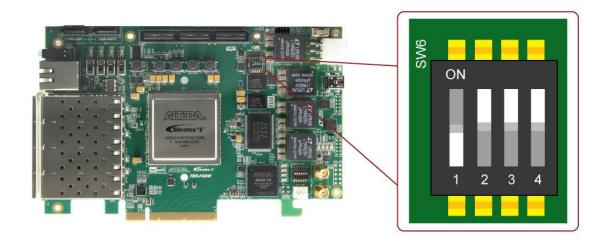


Figure 2-7 SW6 4-Position JTAG Chain DIP Switch Settings

2.3 General User Input/Output

This section describes the user I/O interface to the FPGA.

■ User Defined Push-buttons

The FPGA board includes four user defined push-buttons that allow users to interact with the Stratix V GX device. Each push-button provides a high logic level or a low logic level when it is not pressed or pressed, respectively. **Table 2-5** lists the board references, signal names and their corresponding Stratix V GX device pin numbers.

Table 2-5 Push-button Pin Assignments, Schematic Signal Names, and Functions

Board	Schematic	Description		Stratix V GX
Reference	Signal Name		Standard	Pin Number
PB0	BUTTON0	High Logic Level when the button is not pressed	2.5-V	PIN_C18
PB1	BUTTON1		2.5-V	PIN_B19
PB2	BUTTON2		2.5-V	PIN_B17
PB3	BUTTON3		2.5-V	PIN_A17

■ User-Defined Slide Switch

There are four slide switches on the FPGA board to provide additional FPGA input control. When a

slide switch is in the DOWN position or the UPPER position, it provides a low logic level or a high logic level to the Stratix V GX FPGA, respectively, as shown in **Figure 2-8**.

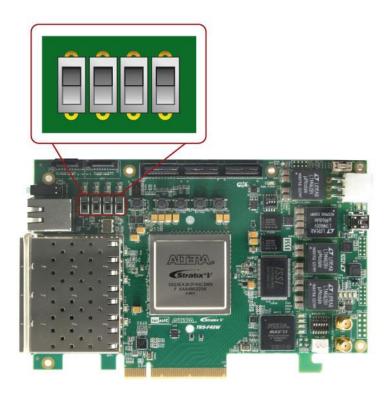


Figure 2-8 4-Position Slide switches

Table 2-6 lists the signal names and their corresponding Stratix V GX device pin numbers.

Table 2-6 Slide Switch Pin Assignments, Schematic Signal Names, and Functions

Board Reference	Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
SW0	SW0	High logic level when SW in the UPPER	2.5-V	PIN_F17
SW1	SW1		2.5-V	PIN_G17
SW2	SW2		2.5-V	PIN_G19
SW3	SW3		2.5-V	PIN_G16

■ User-Defined LEDs

The FPGA board consists of 10 user-controllable LEDs to allow status and debugging signals to be driven to the LEDs from the designs loaded into the Stratix V GX device. Each LED is driven directly by the Stratix V GX FPGA. The LED is turned on or off when the associated pins are

driven to a low or high logic level, respectively. A list of the pin names on the FPGA that are connected to the LEDs is given in **Table 2-7**.

Table 2-7 User LEDs Pin Assignments, Schematic Signal Names, and Functions

Board	Schematic	Description	1/0	Stratix V GX
Reference	Signal Name	Description	Standard	Pin Number
D0	LED0		2.5-V	PIN_C16
D1	LED1		2.5-V	PIN_D18
D2	LED2		2.5-V	PIN_B16
D3	LED3	LED ON. Driving a logic high on the I/O port turns the LED OFF.	2.5-V	PIN_A16
D5-1	LED_BRACKET0		2.5-V	PIN_E18
D5-3	LED_BRACKET1		2.5-V	PIN_E17
D5-5	LED_BRACKET2		2.5-V	PIN_E19
D5-7	LED_BRACKET3		2.5-V	PIN_D16
J6-10	LED_RJ45_L		2.5-V	PIN_M15
J6-12	LED_RJ45_R		2.5-V	PIN_N15

2.4 Temperature Sensor and Fan Control

The FPGA board is equipped with a temperature sensor, MAX1619, which provides temperature sensing and over-temperature alert. These functions are accomplished by connecting the temperature sensor to the internal temperature sensing diode of the Stratix V GX device. The temperature status and alarm threshold registers of the temperature sensor can be programmed by a two-wire SMBus, which is connected to the Stratix V GX FPGA. In addition, the 7-bit POR slave address for this sensor is set to '0011000b'.

An optional 3-pin +12V fan located on J15 of the FPGA board is intended to reduce the temperature of the FPGA. Users can control the fan to turn on/off depending on the measured system temperature. The FAN is turned on when the FAN_CTRL pin is driven to a high logic level or tri-state.

The pin assignments for the associated interface are listed in **Table 2-8**.

Table 2-8 Temperature Sensor Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
TEMPDIODEp	Positive pin of temperature diode in Stratix V	2.5-V	PIN_R6

TEMPDIODEn	Negative pin of temperature diode in Stratix V	2.5-V	PIN_P5
TEMP_CLK	SMBus clock	2.5-V	PIN_AM17
TEMP_DATAT	SMBus data	2.5-V	PIN_AN17
TEMP_OVERT_n	SMBus alert (interrupt)	2.5-V	PIN_AR17
TEMP_INT_n	SMBus alert (interrupt)	2.5-V	PIN_AT17
FAN_CTRL	Fan control	2.5-V	PIN_AW16

2.5 Clock Circuit

The development board includes one 50 MHz and two programmable oscillators. **Figure 2-9** shows the default frequencies of on-board all external clocks going to the Stratix V GX FPGA. The figures also show an off-board external clock from PCI Express Host to the FPGA. Lastly, there is an SMA connector for clock input, and an SMA connector for clock output.

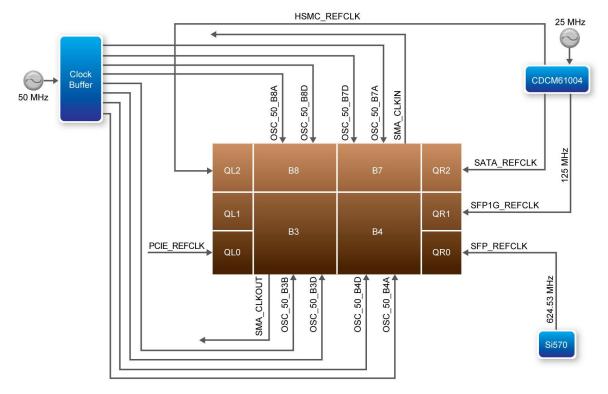


Figure 2-9 Clock Circuit of the FPGA Board

A clock buffer is used to duplicate the 50 MHz oscillator, so each bank of FPGA I/O bank 3/4/7/8 has two clock inputs. The two programming oscillators are low-jitter oscillators which are used to provide special and high quality clock signals for high-speed transceivers. **Figure 2-10** shows the

control circuits of programmable oscillators. The CDCM61004 oscillator can be programmed to generate a desired reference clock for the 1G Ethernet SFP+ transceiver, SATA Host/Device transceiver and eight transceivers in the HSMC connector. The Si570 programmable oscillator is programmed via an I2C serial interface to generate the reference clock for 10G Ethernet SFP+ transceiver.

Figure 2-10 Control Circuits of Programmable Oscillators

Table 2-9 lists the clock source, signal names, default frequency and their corresponding Stratix V GX device pin numbers.

Table 2-9 Clock Source, Signal Name, Default Frequency, Pin Assignments and Functions

Source	Schematic Signal Name	Default Frequency	I/O Standard	Stratix V GX Pin Number	Application
	OSC_50_B3B		2.5-V	PIN_AV29	
	OSC_50_B3D	50.0 MHz	2.5-V	PIN_AK23	
	OSC_50_B4A		2.5-V	PIN_AL7	
	OSC_50_B4D		2.5-V	PIN_AF17	
Y3	OSC_50_B7A		2.5-V	PIN_G7	
	OSC_50_B7D		2.5-V	PIN_P16	
	OSC_50_B8A		1.5-V/1.8-V/2.5-V	PIN_E34	
	OSC_50_B8D		1.5-V/1.8-V/2.5-V	PIN_J23	

U10	SFP_REFCLK_p	100.0 MHz	HCSL	PIN_AF6	10G SFP+
U27	SFP1G_REFCLK_p	125.0 MHz	HCSL	PIN_AB6	1G SFP+
U27	SATA_REFCLK_p	125.0 MHz	HCSL	PIN_V6	SATA
U27	HSMC_REFCLK_p	125.0 MHz	HCSL	PIN_V34	HSMC XCVR
J15	PCIE_REFCLK_p	From Host	HCSL	PIN_AF34	PCI Express
J12	SMA_CLKIN	User input	2.5-V	PIN_U15	
J14	SMA_CLKOUT	User output	2.5-V	PIN_AD30	

Table 2-10 lists the programmable oscillator control pins, signal names, I/O standard and their corresponding Stratix V GX device pin numbers.

Table 2-10 Programmable oscillator control pin, Signal Name, I/O standard, Pin Assignments and Descriptions

una Descriptions					
Programmable Oscillator	Schematic Signal Name	I/O Standard	Stratix V GX Pin Number	Description	
Si570	CLOCK_SCL	2.5-V	PIN_AD15	I2C bus, direct connected	
(U10)	CLOCK_SDA	2.5-V	PIN_AD16	with Si570	
	CLK_RST_n	2.5-V	PIN_AC15	Device reset (active low)	
	CLK_CE	2.5-V	PIN_AH15	Chip enable	
	CLK_PR0	2.5-V	PIN_AB16	Output divider control	
0001104004	CLK_PR1	2.5-V	PIN_AJ15	Output divider control	
CDCM61004	CLK_OS0	2.5-V	PIN_AG14	Output type select	
(U27)	CLK_OS1	2.5-V	PIN_AG15	Output type select	
	CLK_OD0	2.5-V	PIN_AB15	Output divider control	
	CLK_OD1	2.5-V	PIN_AA15	Output divider control	
	CLK_OD2	2.5-V	PIN_AA14	Output divider control	

2.6 RS422 Serial Port

The RS422 is designed to perform communication between boards, allowing a transmission speed of up to 20 Mbps. **Figure 2-11** shows the RS422 block diagram of the development board. The full-duplex LTC2855 is used to translate the RS422 signal, and the RJ45 is used as an external connector for the RS422 signal.

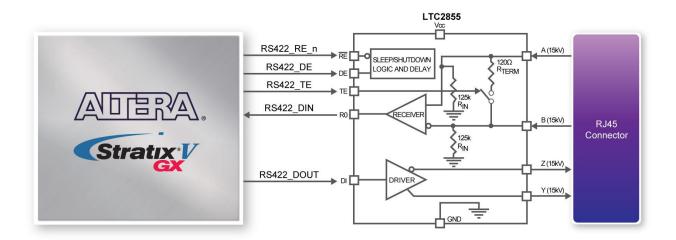


Figure 2-11 Block Diagram of RS422

Table 2-11 lists the RS422 pin assignments, signal names and functions.

Table 2-11 RS422 Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
RS422_DE	Driver Enable. A high on DE enables the driver. A low input will force the driver outputs into a high impedance state.		PIN_K16
RS422_DIN	Receiver Output. The data is send to FPGA.		PIN_H19
RS422_DOUT	Driver Input. The data is sent from FPGA.]	PIN_H17
RS422_RE_n	Receiver Enable. A low enables the receiver. A high input forces the receiver output into a high impedance state.	2.5-V	PIN_L16
RS422_TE	Internal Termination Resistance Enable. A high input will connect a termination resistor (120 Ω typical) between pins A and B.		PIN_H16

2.7 FLASH Memory

The development board has two 1Gb CFI-compatible synchronous flash devices for non-volatile storage of FPGA configuration data, user application data, and user code space.

Each interface has a 16-bit data bus and the two devices combined allow for FPP x32 configuration. This device is part of the shared flash, SSRAM and MAX (FSM) bus, which connects to the flash

memory, SSRAM memory and MAX II CPLD (EPM2210) System Controller. **Figure 2-12** shows the connections between the Flash, SSRAM, MAX II CPLD and Stratix V GX FPGA.

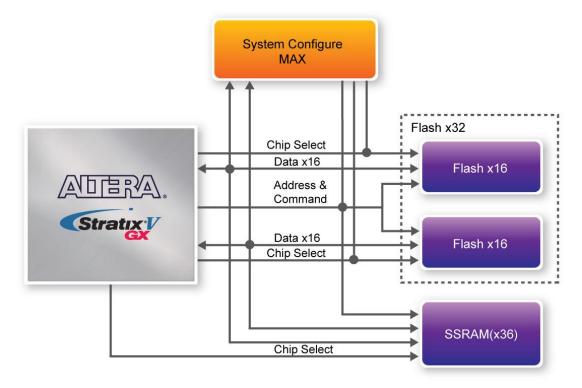


Figure 2-12 Connection between the Flash, Max and Stratix V GX FPGA

Table 2-12 lists the flash pin assignments, signal names, and functions.

Table 2-12 Flash Memory Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
FSM_A0	Address bus	2.5-V	PIN_AW22
FSM_A1	Address bus	2.5-V	PIN_AV23
FSM_A2	Address bus	2.5-V	PIN_AV25
FSM_A3	Address bus	2.5-V	PIN_AT24
FSM_A4	Address bus	2.5-V	PIN_AN23
FSM_A5	Address bus	2.5-V	PIN_AW23
FSM_A6	Address bus	2.5-V	PIN_AU23
FSM_A7	Address bus	2.5-V	PIN_AP24
FSM_A8	Address bus	2.5-V	PIN_AM25
FSM_A9	Address bus	2.5-V	PIN_AM26
FSM_A10	Address bus	2.5-V	PIN_AP25
FSM_A11	Address bus	2.5-V	PIN_AP22
FSM_A12	Address bus	2.5-V	PIN_AL24
FSM_A13	Address bus	2.5-V	PIN_AM23

FSM_		Address bus	2.5-V	PIN_AH24
FSM_		Address bus	2.5-V	PIN_AG25
FSM_		Address bus	2.5-V	PIN_AK24
FSM_	_	Address bus	2.5-V	PIN_AM22
FSM_	_A18	Address bus	2.5-V	PIN_AL25
FSM_	_A19	Address bus	2.5-V	PIN_AT23
FSM_	_A20	Address bus	2.5-V	PIN_AJ26
FSM_	_A21	Address bus	2.5-V	PIN_AT26
FSM_	_A22	Address bus	2.5-V	PIN_AR22
FSM_	_A23	Address bus	2.5-V	PIN_AU24
FSM_	_A24	Address bus	2.5-V	PIN_AR24
FSM_	_A25	Address bus	2.5-V	PIN_AN22
FSM_	_A26	Address bus	2.5-V	PIN_AR25
FSM_	_D0	Data bus	2.5-V	PIN_AJ24
FSM_	_D1	Data bus	2.5-V	PIN_AH27
FSM_	_D2	Data bus	2.5-V	PIN_AG27
FSM_	_D3	Data bus	2.5-V	PIN_AG26
FSM_	_D4	Data bus	2.5-V	PIN_AG24
FSM_	_D5	Data bus	2.5-V	PIN_AG23
FSM_	_D6	Data bus	2.5-V	PIN_AC27
FSM_	_D7	Data bus	2.5-V	PIN_AC26
FSM_	_D8	Data bus	2.5-V	PIN_AA26
FSM_	_D9	Data bus	2.5-V	PIN_AF23
FSM_	_D10	Data bus	2.5-V	PIN_AG22
FSM_	_D11	Data bus	2.5-V	PIN_AF22
FSM_	D12	Data bus	2.5-V	PIN_AD21
FSM_	_D13	Data bus	2.5-V	PIN_AE21
FSM_	D14	Data bus	2.5-V	PIN_AE20
FSM_	_D15	Data bus	2.5-V	PIN_AD20
FSM	_D16	Data bus	2.5-V	PIN_AE22
FSM_	_D17	Data bus	2.5-V	PIN_AD22
FSM_	_D18	Data bus	2.5-V	PIN_AB24
FSM	_D19	Data bus	2.5-V	PIN_AD24
FSM	_D20	Data bus	2.5-V	PIN_AC24
FSM	D21	Data bus	2.5-V	PIN_AA25
FSM		Data bus	2.5-V	PIN_AB25
FSM		Data bus	2.5-V	PIN_AC25
FSM		Data bus	2.5-V	PIN_AE25
FSM	D25	Data bus	2.5-V	PIN_AD26
FSM		Data bus	2.5-V	PIN_AE26
FSM		Data bus	2.5-V	PIN_AE24
FSM		Data bus	2.5-V	PIN_AF25
FSM		Data bus	2.5-V	PIN AF26
I SIVI_		Data Dus	4.J- ¥	i 111_A1 40

FSM_D30	Data bus	2.5-V	PIN_AA27
FSM_D31	Data bus	2.5-V	PIN_AB27
FLASH_CLK	Clock	2.5-V	PIN_AB30
FLASH_RESET_n	Reset	2.5-V	PIN_AT27
FLASH_CE_n[0]	Chip enable of of flash-0	2.5-V	PIN_AU25
FLASH_CE_n[1]	Chip enable of of flash-1	2.5-V	PIN_AN24
FLASH_OE_n	Output enable	2.5-V	PIN_AP27
FLASH_WE_n	Write enable	2.5-V	PIN_AP28
FLASH_ADV_n	Address valid	2.5-V	PIN_AR27
FLASH_RDY_BSY_n[0]	Ready of flash-0	2.5-V	PIN_AU26
FLASH_RDY_BSY_n[1]	Ready of flash-1	2.5-V	PIN_AR28

2.8 SSRAM

The IS61LPS51236A Synchronous Static Random Access Memory (SSRAM) device featured on the TR5-F40W development board is part of the shared FMS Bus, which connects to flash memory, SSRAM, and the MAX II CPLD (EEPM2210) System Controller.

Table 2-13 lists the SSRAM pin assignments, signal names relative to the Stratix V GX device, in respectively.

Table 2-13 SSRAM Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
FSM_A0	Address bus	2.5-V	PIN_AW22
FSM_A1	Address bus	2.5-V	PIN_AV23
FSM_A2	Address bus	2.5-V	PIN_AV25
FSM_A3	Address bus	2.5-V	PIN_AT24
FSM_A4	Address bus	2.5-V	PIN_AN23
FSM_A5	Address bus	2.5-V	PIN_AW23
FSM_A6	Address bus	2.5-V	PIN_AU23
FSM_A7	Address bus	2.5-V	PIN_AP24
FSM_A8	Address bus	2.5-V	PIN_AM25
FSM_A9	Address bus	2.5-V	PIN_AM26
FSM_A10	Address bus	2.5-V	PIN_AP25
FSM_A11	Address bus	2.5-V	PIN_AP22
FSM_A12	Address bus	2.5-V	PIN_AL24
FSM_A13	Address bus	2.5-V	PIN_AM23
FSM_A14	Address bus	2.5-V	PIN_AH24
FSM_A15	Address bus	2.5-V	PIN_AG25

FSM A16	Address bus	2.5-V	PIN AK24
		-	_
FSM_A17	Address bus	2.5-V	PIN_AM22
FSM_A18	Address bus	2.5-V	PIN_AL25
FSM_A19	Address bus	2.5-V	PIN_AT23
FSM_A20	Address bus	2.5-V	PIN_AJ26
FSM_A21	Address bus	2.5-V	PIN_AT26
FSM_A22	Address bus	2.5-V	PIN_AR22
FSM_A23	Address bus	2.5-V	PIN_AU24
FSM_A24	Address bus	2.5-V	PIN_AR24
FSM_A25	Address bus	2.5-V	PIN_AN22
FSM_A26	Address bus	2.5-V	PIN_AR25
FSM_D0	Data bus	2.5-V	PIN_AJ24
FSM_D1	Data bus	2.5-V	PIN_AH27
FSM_D2	Data bus	2.5-V	PIN_AG27
FSM_D3	Data bus	2.5-V	PIN_AG26
FSM_D4	Data bus	2.5-V	PIN_AG24
FSM_D5	Data bus	2.5-V	PIN_AG23
FSM_D6	Data bus	2.5-V	PIN_AC27
FSM_D7	Data bus	2.5-V	PIN_AC26
FSM_D8	Data bus	2.5-V	PIN_AA26
FSM_D9	Data bus	2.5-V	PIN_AF23
FSM_D10	Data bus	2.5-V	PIN_AG22
FSM_D11	Data bus	2.5-V	PIN_AF22
FSM_D12	Data bus	2.5-V	PIN_AD21
FSM_D13	Data bus	2.5-V	PIN_AE21
FSM_D14	Data bus	2.5-V	PIN_AE20
FSM_D15	Data bus	2.5-V	PIN_AD20
FSM_D16	Data bus	2.5-V	PIN_AE22
FSM_D17	Data bus	2.5-V	PIN_AD22
FSM_D18	Data bus	2.5-V	PIN_AB24
FSM_D19	Data bus	2.5-V	PIN_AD24
FSM_D20	Data bus	2.5-V	PIN_AC24
FSM_D21	Data bus	2.5-V	PIN_AA25
FSM_D22	Data bus	2.5-V	PIN_AB25
FSM_D23	Data bus	2.5-V	PIN_AC25
FSM_D24	Data bus	2.5-V	PIN_AE25
FSM D25	Data bus	2.5-V	PIN_AD26
FSM_D26	Data bus	2.5-V	PIN_AE26
FSM D27	Data bus	2.5-V	PIN_AE24
FSM_D28	Data bus	2.5-V	PIN_AF25
FSM_D29	Data bus	2.5-V	PIN_AF26
FSM_D30	Data bus	2.5-V	PIN_AA27
FSM_D31	Data bus	2.5-V	PIN_AB27
L9M-D31	Data dus	∠.5-V	PIN_AB2/

Data bus	2.5-V	PIN_AK30
Data bus	2.5-V	PIN_AN25
Data bus	2.5-V	PIN_AL27
Data bus	2.5-V	PIN_AN27
Synchronous Clock	2.5-V	PIN_AE30
Synchronous Byte lane 0 Write Input	2.5-V	PIN_AJ29
Synchronous Byte lane 1 Write Input	2.5-V	PIN_AL28
Synchronous Byte lane 2 Write Input	2.5-V	PIN_AK27
Synchronous Byte lane 3 Write Input	2.5-V	PIN_AH25
Output Enable	2.5-V	PIN_AM28
Synchronous Chip enable	2.5-V	PIN_AL26
Write enable	2.5-V	PIN_AK29
Synchronous Burst Address Advance	2.5-V	PIN_AL30
Address Status Controller	2.5-V	PIN_AN26
Address Status Controller	2.5-V	PIN_AM29
Address Status Processor	2.5-V	PIN_AN28
Burst Sequence Selection	2.5-V	PIN_AJ27
Power Sleep Mode	2.5-V	PIN_AL29
	Data bus Data bus Synchronous Clock Synchronous Byte lane 0 Write Input Synchronous Byte lane 1 Write Input Synchronous Byte lane 2 Write Input Synchronous Byte lane 3 Write Input Output Enable Synchronous Chip enable Write enable Synchronous Burst Address Advance Address Status Controller Address Status Processor Burst Sequence Selection	Data bus 2.5-V Data bus 2.5-V Data bus 2.5-V Synchronous Clock 2.5-V Synchronous Byte Iane 0 Write Input 2.5-V Synchronous Byte Iane 1 Write Input 2.5-V Synchronous Byte Iane 2 Write Input 2.5-V Synchronous Byte Iane 3 Write Input 2.5-V Output Enable 2.5-V Synchronous Chip enable 2.5-V Write enable 2.5-V Synchronous Burst Address Advance 2.5-V Address Status Controller 2.5-V Address Status Controller 2.5-V Address Status Processor 2.5-V Burst Sequence Selection 2.5-V

2.9 SPF+ Ports

The development board has four independent 10G SFP+ connectors that use one transceiver channel each from the Stratix V GX FPGA device. These modules take in serial data from the Stratix V GX FPGA device and transform them to optical signals. The board includes cage assemblies for the SFP+ connectors. **Figure 2-13** shows the connections between the SFP+ and Stratix V GX FPGA.

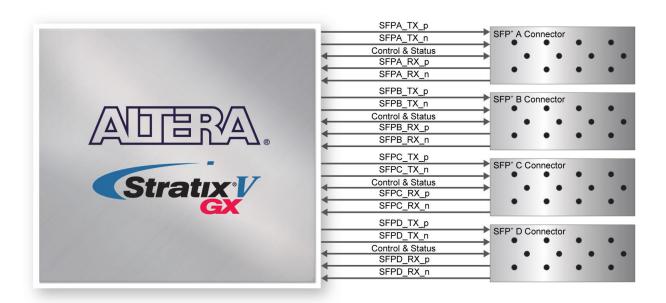


Figure 2-13 Connection between the SFP+ and Stratix V GX FPGA

Table 2-14 to **Table 2-17** list the SFP+ A, B, C and D pin assignments and signal names relative to the Stratix V GX device.

Table 2-14 SFP+ A Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
SFPA_TX_p	Transmitter data	1.4-V PCML	PIN_AA4
SFPA_TX_n	Transmitter data	1.4-V PCML	PIN_AA3
SFPA_RX_p	Receiver data	1.4-V PCML	PIN_AB2
SFPA_RX_n	Receiver data	1.4-V PCML	PIN_AB1
SFPA_LOS	Signal loss indicator	2.5V	PIN_AE10
SFPA_MOD0_PRSNT_n	Module present	2.5V	PIN_AD9
SFPA_MOD1_SCL	Serial 2-wire clock	2.5V	PIN_AC9
SFPA_MOD2_SDA	Serial 2-wire data	2.5V	PIN_AC12
SFPA_RATESEL0	Rate select 0	2.5V	PIN_AE11
SFPA_RATESEL1	Rate select 1	2.5V	PIN_AE9
SFPA_TXDISABLE	Turns off and disables the transmitter output	2.5V	PIN_AB9
SFPA_TXFAULT	Transmitter fault	2.5V	PIN_AB12

Table 2-15 SFP+ B Pin Assignments, Schematic Signal Names, and Functions

Schematic	Description	I/O Standard	Stratix V GX
Signal Name	Description	I/O Standard	Pin Number

SFPB_TX_p	Transmitter data	1.4-V PCML	PIN_AE4
SFPB_TX_n	Transmitter data	1.4-V PCML	PIN_AE3
SFPB_RX_p	Receiver data	1.4-V PCML	PIN_AF2
SFPB_RX_n	Receiver data	1.4-V PCML	PIN_AF1
SFPB_LOS	Signal loss indicator	2.5V	PIN_AN9
SFPB_MOD0_PRSNT_n	Module present	2.5V	PIN_AM10
SFPB_MOD1_SCL	Serial 2-wire clock	2.5V	PIN_AM11
SFPB_MOD2_SDA	Serial 2-wire data	2.5V	PIN_AL10
SFPB_RATESEL0	Rate select 0	2.5V	PIN_AN11
SFPB_RATESEL1	Rate select 1	2.5V	PIN_AP9
SFPB_TXDISABLE	Turns off and disables the transmitter output	2.5V	PIN_AL11
SFPB_TXFAULT	Transmitter fault	2.5V	PIN_AK11

Table 2-16 SFP+ C Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
SFPC_TX_p	Transmitter data	1.4-V PCML	PIN_AN4
SFPC_TX_n	Transmitter data	1.4-V PCML	PIN_AN3
SFPC_RX_p	Receiver data	1.4-V PCML	PIN_AP2
SFPC_RX_n	Receiver data	1.4-V PCML	PIN_AP1
SFPC_LOS	Signal loss indicator	2.5V	PIN_AK12
SFPC_MOD0_PRSNT_n	Module present	2.5V	PIN_AH9
SFPC_MOD1_SCL	Serial 2-wire clock	2.5V	PIN_AH10
SFPC_MOD2_SDA	Serial 2-wire data	2.5V	PIN_AG9
SFPC_RATESEL0	Rate select 0	2.5V	PIN_AJ10
SFPC_RATESEL1	Rate select 1	2.5V	PIN_AL12
SFPC_TXDISABLE	Turns off and disables the transmitter output	2.5V	PIN_AG12
SFPC_TXFAULT	Transmitter fault	2.5V	PIN_AF11

Table 2-17 SFP+ D Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
SFPD_TX_p	Transmitter data	1.4-V PCML	PIN_AU4
SFPD_TX_n	Transmitter data	1.4-V PCML	PIN_AU3
SFPD_RX_p	Receiver data	1.4-V PCML	PIN_AV2
SFPD_RX_n	Receiver data	1.4-V PCML	PIN_AV1
SFPD_LOS	Signal loss indicator	2.5V	PIN_AV11
SFPD_MOD0_PRSNT_n	Module present	2.5V	PIN_AU10
SFPD_MOD1_SCL	Serial 2-wire clock	2.5V	PIN_AU9
SFPD_MOD2_SDA	Serial 2-wire data	2.5V	PIN_AT9

SFPD_RATESEL0	Rate select 0 2.5V PIN_		PIN_AU11
SFPD_RATESEL1	Rate select 1 2.5V		PIN_AW11
SFPD_TXDISABLE Turns off and disables the transmitter output		2.5V	PIN_AT11
SFPD_TXFAULT	Transmitter fault	2.5V	PIN_AR9

2.10 PCI Express

The FPGA development board is designed to fit entirely into a PC motherboard with x8 or x16 PCI Express slot. Utilizing built-in transceivers on a Stratix V GX device, it is able to provide a fully integrated PCI Express-compliant solution for multi-lane (x1, x4, and x8) applications. With the PCI Express hard IP block incorporated in the Stratix V GX device, it will allow users to implement simple and fast protocol, as well as saving logic resources for logic application. **Figure 2-14** presents the pin connection established between the Stratix V GX and PCI Express.

The PCI Express interface supports complete PCI Express Gen1 at 2.5Gbps/lane, Gen2 at 5.0Gbps/lane, and Gen3 at 8.0Gbps/lane protocol stack solution compliant to PCI Express base specification 3.0 that includes PHY-MAC, Data Link, and transaction layer circuitry embedded in PCI Express hard IP blocks.

The power of the board can be sourced entirely from the PCI Express edge connector when installed into a PC motherboard. It is strongly recommended that users connect the PCIe external power connector to 6-pin 12V DC power connector in the FPGA to avoid FPGA damage due to insufficient power. The PCIE_REFCLK_p signal is a differential input that is driven from the PC motherboard on this board through the PCIe edge connector. A DIP switch (SW8) is connected to the PCI Express to allow different configurations to enable a x1, x4, or x8 PCIe.

Table 2-18 summarizes the PCI Express pin assignments of the signal names relative to the Stratix V GX FPGA.

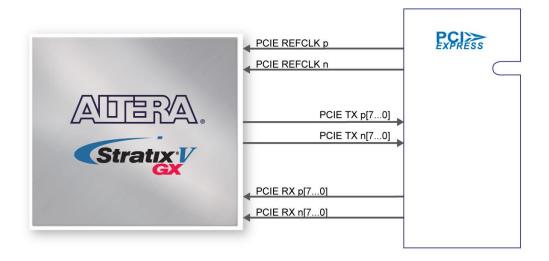


Figure 2-14 PCI Express pin connection

Table 2-18 PCI Express Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description I/O Standard Stratix V GX Pin Number		
PCIE_TX_p0	Add-in card transmit bus	1.4-V PCML	PIN_AU36
PCIE_TX_n0	Add-in card transmit bus	1.4-V PCML	PIN_AU37
PCIE_TX_p1	Add-in card transmit bus	1.4-V PCML	PIN_AR36
PCIE_TX_n1	Add-in card transmit bus	1.4-V PCML	PIN_AR37
PCIE_TX_p2	Add-in card transmit bus	1.4-V PCML	PIN_AN36
PCIE_TX_n2	Add-in card transmit bus	1.4-V PCML	PIN_AN37
PCIE_TX_p3	Add-in card transmit bus	1.4-V PCML	PIN_AL36
PCIE_TX_n3	Add-in card transmit bus	1.4-V PCML	PIN_AL37
PCIE_TX_p4	Add-in card transmit bus	1.4-V PCML	PIN_AG36
PCIE_TX_n4	Add-in card transmit bus	1.4-V PCML	PIN_AG37
PCIE_TX_p5	Add-in card transmit bus	1.4-V PCML	PIN_AE36
PCIE_TX_n5	Add-in card transmit bus	1.4-V PCML	PIN_AE37
PCIE_TX_p6	Add-in card transmit bus	1.4-V PCML	PIN_AC36
PCIE_TX_n6	Add-in card transmit bus	1.4-V PCML	PIN_AC37
PCIE_TX_p7	Add-in card transmit bus	1.4-V PCML	PIN_AA36
PCIE_TX_n7	Add-in card transmit bus	1.4-V PCML	PIN_AA37
PCIE_RX_p0	Add-in card receive bus	1.4-V PCML	PIN_AV38
PCIE_RX_n0	Add-in card receive bus	1.4-V PCML	PIN_AV39
PCIE_RX_p1	Add-in card receive bus	1.4-V PCML	PIN_AT38
PCIE_RX_n1	Add-in card receive bus	1.4-V PCML	PIN_AT39
PCIE_RX_p2	Add-in card receive bus	1.4-V PCML	PIN_AP38
PCIE_RX_n2	Add-in card receive bus	1.4-V PCML	PIN_AP39
PCIE_RX_p3	Add-in card receive bus	1.4-V PCML	PIN_AM38

PCIE_RX_n3	Add-in card receive bus	1.4-V PCML	PIN_AM39
PCIE_RX_p4	Add-in card receive bus 1.4-V PCML F		PIN_AH38
PCIE_RX_n4	Add-in card receive bus	d receive bus 1.4-V PCML PIN	
PCIE_RX_p5	Add-in card receive bus	1.4-V PCML	PIN_AF38
PCIE_RX_n5	Add-in card receive bus	1.4-V PCML	PIN_AF39
PCIE_RX_p6	Add-in card receive bus	1.4-V PCML	PIN_AD38
PCIE_RX_n6	Add-in card receive bus	1.4-V PCML	PIN_AD39
PCIE_RX_p7	Add-in card receive bus	1.4-V PCML	PIN_AB38
PCIE_RX_n7	Add-in card receive bus	1.4-V PCML	PIN_AB39
PCIE_REFCLK_p	Motherboard reference clock	HCSL	PIN_AF34
PCIE_REFCLK_n	Motherboard reference clock	HCSL	PIN_AF35
PCIE_PERST_n	Reset	2.5-V	PIN_AC28
PCIE_SMBCLK	SMB clock	2.5-V	PIN_AF28
PCIE_SMBDAT	SMB data	2.5-V	PIN_AB28
PCIE_WAKE_n	Wake signal	2.5-V	PIN_AE29
PCIE_PRSNT1n	Hot plug detect	-	-
PCIE_PRSNT2n_x1	Hot plug detect x1 PCle slot	-	-
POIE_PRONTZII_XT	enabled using SW8 dip switch		
PCIE_PRSNT2n_x4	Hot plug detect x4 PCle slot	-	-
FOIE_FRONTZII_X4	enabled using SW8 dip switch		
PCIE_PRSNT2n_x8	Hot plug detect x8 PCle slot	-	-
I OIL_I NOITIZII_X0	enabled using SW8 dip switch		

2.11 SATA

Two Serial ATA (SATA) ports are available on the FPGA development board which are computer bus standard with a primary function of transferring data between the motherboard and mass storage devices (such as hard drives, optical drives, and solid-state disks). Supporting a storage interface is just one of many different applications an FPGA can be used in storage appliances. The Stratix V GX device can bridge different protocols such as bridging simple bus I/Os like PCI Express (PCIe) to SATA or network interfaces such as Gigabit Ethernet (GbE) to SATA. The SATA interface supports SATA 3.0 standard with connection speed of 6 Gbps based on Stratix V GX device with integrated transceivers compliant to SATA electrical standards.

The two Serial ATA (SATA) ports include one port for device and one port for host capable of implementing SATA solution with a design that consists of both host and target (device side) functions. **Figure 2-15** depicts the host and device design examples.

Figure 2-15 PC and Storage Device Connection to the Stratix V GX FPGA

The transmitter and receiver signals of the SATA ports are connected directly to the Stratix V GX transceiver channels to provide SATA IO connectivity to both host and target devices. To verify the functionality of the SATA host/device ports, a connection can be established between the two ports by using a SATA cable as **Figure 2-16** depicts the associated signals connected. **Table 2-19** lists the SATA pin assignments, signal names and functions.

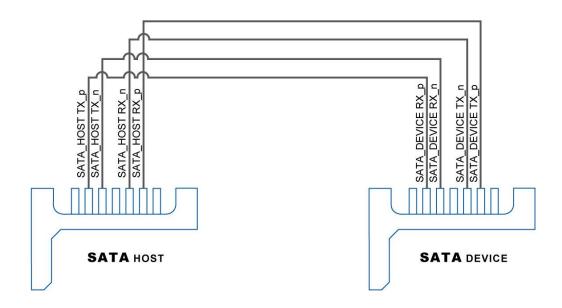


Figure 2-16 4 Pin connection between SATA connectors

Table 2-19 Serial ATA Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
SATA_REFCLK_p	Reference Clock	HCSL	PIN_V6
SATA_REFCLK_n	Reference Clock	HCSL	PIN_V5
Device			
SATA_DEVICE_RX_p0	Differential receive data input after DC blocking capacitor	1.4-V PCML	PIN_P2
SATA_DEVICE_RX_n0	Differential receive data input after DC blocking capacitor	1.4-V PCML	PIN_P1
SATA_DEVICE_TX_n0	Differential transmit data output before DC blocking capacitor	1.4-V PCML	PIN_N4
SATA_DEVICE_TX_p0	Differential transmit data output before DC blocking capacitor	1.4-V PCML	PIN_N3
Host			
SATA_HOST_TX_p0	Differential transmit data output before DC blocking capacitor	1.4-V PCML	PIN_K2
SATA_HOST_TX_n0	Differential transmit data output before DC blocking capacitor	1.4-V PCML	PIN_K1
SATA_HOST_RX_n0	Differential receive data input after DC blocking capacitor	1.4-V PCML	PIN_J4
SATA_HOST_RX_p0	Differential receive data input after DC blocking capacitor	1.4-V PCML	PIN_J3

2.12 HSMC: High-Speed Mezzanine Card

The FPGA development board contains one HSMC connector. The HSMC connector provides a mechanism to extend the peripheral-set of an FPGA host board by means of add-on cards, which can address today's high speed signaling requirement as well as low-speed device interface support. The HSMC interfaces support JTAG, clock outputs and inputs, high-speed serial I/O (transceivers), and single-ended or differential signaling.

The HSMC interface connected to the Stratix V GX device is a female HSMC connector having a total of 172pins, including 121 signal pins (120 signal pins +1 PSNTn pin), 39 power pins, and 12 ground pins. The HSMC connector is based on the SAMTEC 0.5 mm pitch, surface-mount QSH family of high-speed, board-to-board connectors. The Stratix V GX device provides +12 V DC and +3.3 V DC power to the mezzanine card through the HSMC connector. **Table 2-20** indicates the maximum power consumption for the HSMC connector.

Table 2-20 Power Supply of the HSMC

Supplied Voltage	Max. Current Limit
12V	2A
3.3V	3A

There are three banks in this connector as **Figure 2-17** shows the bank arrangement of signals with respect to the SAMTEC connector. **Table 2-21** lists the mapping of the FPGA pin assignments to the HSMC connectors.

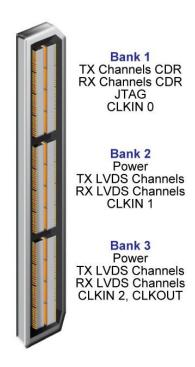


Figure 2-17 HSMC Signal and Bank Diagram

■ I/O Distribution

The HSMC connector consists of 8 pairs CDR-based transceivers, 18 pairs LVDS transmitter channels, and 18 pairs LVDS receiver channels.

■ Adjustable I/O Standards

The FPGA I/O standards of the HSMC ports can be adjusted by configuring the header position. Each port can be individually adjusted to 1.5V, 1.8V, 2.5V via jumpers on the top-right. **Figure 2-18** depicts the position of the jumpers and their associated I/O standards. Users can use 2-pin jumpers to configure the I/O standard by choosing the associated positions on the header.

The status of LED D25 will change to indicate the I/O standard of the HSMC port, as shown in **Table 2-21.** For example, LED D25 will turn red when the I/O Standard of HSMC is set to 2.5V.

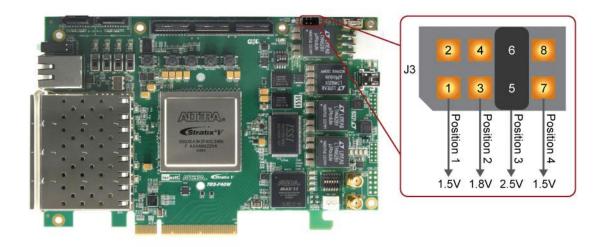


Figure 2-18 HSMC I/O Configuration Header

Table 2-21 HSMC IO Standard Indicators

I/O Standard	Jump Position	Jump Position (J3)	LED Status (D25)
1.5V	J3.1 – J3.2	2 4 6 8 1 3 5 7	D25 R258 _\dagger _\d
1.8V	J3.3 – J3.4	2 4 6 8 1 3 5 7	D25 R258
2.5V	J3.5 – J3.6	2 4 6 8	D25 R258 N

(1) Users who connect a daughter card onto the HSMC ports need to pay close attention to the I/O standard between HSMC connector pins and daughter card system. For example, if the

I/O standard of HSMC pins on the board is set to 1.8V, a daughter card with 3.3V or 2.5V I/O standard may not work properly on the board due to I/O standard mismatch. When using custom or third-party HSMC daughter cards, make sure that all the pin locations are aligned correctly to prevent shorts.

■ JTAG Chain on HSMC

The JTAG chain on the HSMC can be activated through the DIP switch (SW6). If there is no connection established on the HSMC connectors, the position 4 of DIP switch (SW6) is to set 'On', where the JTAG signals on the HSMC connectors are bypassed illustrated in **Figure 2-19**.

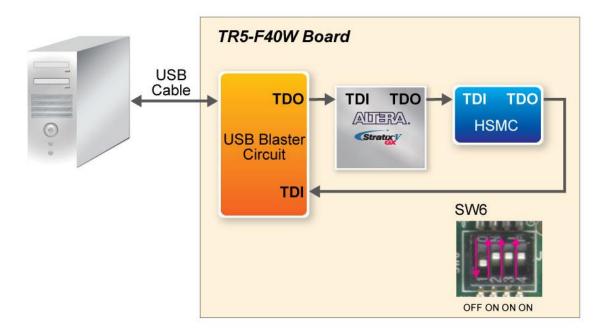


Figure 2-19 JTAG Chain Default for a TR5-F40W board

If a HSMC-based daughter card connected to the HSMC connector uses the JTAG interface, the position 3 of DIP switch (SW6) should be set to 'Off'. In this case, from **Figure 2-20** HSMC is used where position 3 of the SW6 is set to 'Off'. Similarly, if the JTAG interface isn't used on the HSMC-based daughter card, position 3 of SW6 is set to 'On' bypassing the JTAG signals as shown in **Figure 2-21**.

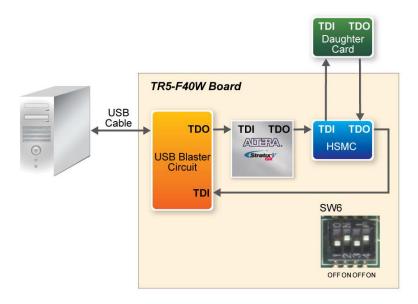


Figure 2-20 JTAG Chain Enabled for HSMC Daughter Card

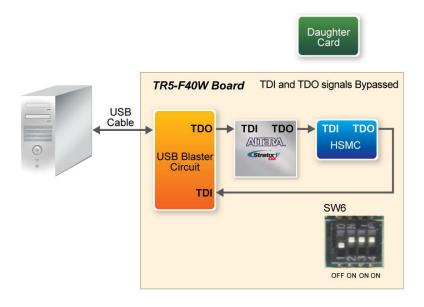


Figure 2-21 JTAG Chain Bypassed for HSMC Daughter Card

Table 2–22 HSMC Pin Assignments, Schematic Signal Names, and Functions

	Schematic Signal Name	Description	I/O Standard	Stratix V GX Pin Number
1	HSMC_GXB_TX_p7	Transceiver TX bit 7	1.4-V PCML	PIN_R36
2	HSMC_GXB_RX_p7	Transceiver RX bit 7	1.4-V PCML	PIN_T38

2	HOMO OVD TV7	Transacives TV hit 7m	1.4-V PCML	DIN DOZ
3	HSMC_GXB_TX_n7	Transceiver TX bit 7n		PIN_R37
4	HSMC_GXB_RX_n7	Transceiver RX bit 7n	1.4-V PCML	PIN_T39
5	HSMC_GXB_TX_p6	Transceiver TX bit 6	1.4-V PCML	PIN_W36
6	HSMC_GXB_RX_p6	Transceiver RX bit 6	1.4-V PCML	PIN_Y38
7	HSMC_GXB_TX_n6	Transceiver TX bit 6n	1.4-V PCML	PIN_W37
8	HSMC_GXB_RX_n6	Transceiver RX bit 6n	1.4-V PCML	PIN_Y39
9	HSMC_GXB_TX_p5	Transceiver TX bit 5	1.4-V PCML	PIN_C36
10	HSMC_GXB_RX_p5	Transceiver RX bit 5	1.4-V PCML	PIN_D38
11	HSMC_GXB_TX_n5	Transceiver RX bit 5n	1.4-V PCML	PIN_C37
12	HSMC_GXB_RX_n5	Transceiver RX bit 5n	1.4-V PCML	PIN_D39
13	HSMC_GXB_TX_p4	Transceiver TX bit 4	1.4-V PCML	PIN_E36
14	HSMC_GXB_RX_p4	Transceiver RX bit 4	1.4-V PCML	PIN_F38
15	HSMC_GXB_TX_n4	Transceiver TX bit 4n	1.4-V PCML	PIN_E37
16	HSMC_GXB_RX_n4	Transceiver RX bit 4n	1.4-V PCML	PIN_F39
17	HSMC_GXB_TX_p3	Transceiver TX bit 3	1.4-V PCML	PIN_G36
18	HSMC_GXB_RX_p3	Transceiver RX bit 3	1.4-V PCML	PIN_H38
19	HSMC_GXB_TX_n3	Transceiver TX bit 3n	1.4-V PCML	PIN_G37
20	HSMC_GXB_RX_n3	Transceiver RX bit 3n	1.4-V PCML	PIN_H39
21	HSMC_GXB_TX_p2	Transceiver TX bit 2	1.4-V PCML	PIN J36
22	HSMC_GXB_RX_p2	Transceiver RX bit 2	1.4-V PCML	PIN K38
23	HSMC_GXB_TX_n2	Transceiver TX bit 2n	1.4-V PCML	PIN J37
24	HSMC_GXB_RX_n2	Transceiver RX bit 2n	1.4-V PCML	PIN_K39
25	HSMC_GXB_TX_p1	Transceiver TX bit 1	1.4-V PCML	PIN L36
26	HSMC_GXB_RX_p1	Transceiver RX bit 1	1.4-V PCML	PIN_M38
27	HSMC_GXB_TX_n1	Transceiver TX bit 1n	1.4-V PCML	PIN L37
28	HSMC_GXB_RX_n1	Transceiver RX bit 1n	1.4-V PCML	PIN_M39
29	HSMC_GXB_TX_p0	Transceiver TX bit 0	1.4-V PCML	PIN N36
30	HSMC_GXB_RX_p0	Transceiver RX bit 0	1.4-V PCML	PIN P38
31	HSMC_GXB_TX_n0	Transceiver TX bit 0n	1.4-V PCML	PIN N37
32	HSMC_GXB_RX_n0	Transceiver RX bit 0n	1.4-V PCML	PIN_P39
33	E HSMC SDA	Management serial data	3.3-V	PIN_G27
34	E HSMC SCL	Management serial clock	3.3-V	PIN_F27
35	HSMC_JTAG_TCK	JTAG clock signal	2.5-V	-
36	HSMC_JTAG_TMS	JTAG mode select signal	2.5-V	-
37	HSMC_JTAG_TDO	JTAG mode select signal	2.5-V	-
38	HSMC_JTAG_TDO	JTAG data output	2.5-V	-
39	HSMC_STAG_TDI	CMOS I/O	VCCIO	PIN_D25
40	HSMC_CLKIN0	Dedicated clock input	VCCIO	PIN_N32
41	HSMC_D0	LVDS TX or CMOS I/O	LVDS or VCCIO	
	_		 	PIN_N20
42	HSMC_D1	LVDS RX or CMOS I/O	LVDS or VCCIO	PIN_K22
43	HSMC_D2	LVDS TX or CMOS I/O	LVDS or VCCIO	PIN_N21
44	HSMC_D3	LVDS RX or CMOS I/O	LVDS or VCCIO	PIN_J22
47	HSMC_TX_p0	LVDS TX bit 0 or CMOS I/O	LVDS or VCCIO	PIN_M20

48	HSMC_RX_p0	LVDS RX bit 0 or CMOS I/O	LVDS or VCCIO	PIN_K21
49	HSMC_TX_n0	LVDS TX bit 0 or CMOS I/O	LVDS or VCCIO	PIN_K21
50	HSMC_RX_n0	LVDS RX bit 0n or CMOS I/O	LVDS or VCCIO	PIN_J21
53	HSMC_TX_p1	LVDS TX bit 1 or CMOS I/O	LVDS or VCCIO	PIN_H20
54	HSMC_RX_p1	LVDS RX bit 1 or CMOS I/O	LVDS or VCCIO	PIN_G21
55	HSMC_TX_n1	LVDS TX bit 1n or CMOS I/O	LVDS or VCCIO	PIN_G20
56	HSMC_RX_n1	LVDS RX bit 1n or CMOS I/O	LVDS or VCCIO	PIN_F21
59	HSMC_TX_p2	LVDS TX bit 2 or CMOS I/O	LVDS or VCCIO	PIN_M21
60	HSMC_RX_p2	LVDS RX bit 2 or CMOS I/O	LVDS or VCCIO	PIN_F20
61	HSMC_TX_n2	LVDS TX bit 2n or CMOS I/O	LVDS or VCCIO	PIN_L21
62	HSMC_RX_n2	LVDS RX bit 2n or CMOS I/O	LVDS or VCCIO	PIN_E20
65	HSMC_TX_p3	LVDS TX bit 3 or CMOS I/O	LVDS or VCCIO	PIN_B20
66	HSMC_RX_p3	LVDS RX bit 3 or CMOS I/O	LVDS or VCCIO	PIN_E21
67	HSMC_TX_n3	LVDS TX bit 3n or CMOS I/O	LVDS or VCCIO	PIN_A20
68	HSMC_RX_n3	LVDS RX bit 3n or CMOS I/O	LVDS or VCCIO	PIN_D21
71	HSMC_TX_p4	LVDS TX bit 4 or CMOS I/O	LVDS or VCCIO	PIN_C20
72	HSMC_RX_p4	LVDS RX bit 4 or CMOS I/O	LVDS or VCCIO	PIN_F23
73	HSMC_TX_n4	LVDS TX bit 4n or CMOS I/O	LVDS or VCCIO	PIN_C21
74	HSMC_RX_n4	LVDS RX bit 4n or CMOS I/O	LVDS or VCCIO	PIN_E23
77	HSMC_TX_p5	LVDS TX bit 5 or CMOS I/O	LVDS or VCCIO	PIN_P23
78	HSMC_RX_p5	LVDS RX bit 5 or CMOS I/O	LVDS or VCCIO	PIN_B26
79	HSMC_TX_n5	LVDS TX bit 5n or CMOS I/O	LVDS or VCCIO	PIN_N23
80	HSMC_RX_n5	LVDS RX bit 5n or CMOS I/O	LVDS or VCCIO	PIN_A26
83	HSMC_TX_p6	LVDS TX bit 6 or CMOS I/O	LVDS or VCCIO	PIN_T24
84	HSMC_RX_p6	LVDS RX bit 6 or CMOS I/O	LVDS or VCCIO	PIN_B28
85	HSMC TX n6	LVDS TX bit 6n or CMOS I/O	LVDS or VCCIO	PIN_R24
86	HSMC_RX_n6	LVDS RX bit 6n or CMOS I/O	LVDS or VCCIO	PIN_A28
89	HSMC_TX_p7	LVDS TX bit 7 or CMOS I/O	LVDS or VCCIO	PIN_B29
90	HSMC_RX_p7	LVDS RX bit 7 or CMOS I/O	LVDS or VCCIO	PIN B31
91	HSMC_TX_n7	LVDS TX bit 7n or CMOS I/O	LVDS or VCCIO	PIN_A29
92	HSMC_RX_n7	LVDS RX bit 7n or CMOS I/O	LVDS or VCCIO	PIN A31
95	HSMC_OUT_p1	LVDS TX or CMOS I/O	LVDS or VCCIO	PIN_L33
		LVDS RX or CMOS I/O or		
96	HSMC_CLKIN_p1	differential clock input	LVDS or VCCIO	PIN_M23
97	HSMC_OUT_n1	LVDS RX or CMOS I/O	LVDS or VCCIO	PIN L34
		LVDS RX or CMOS I/O or		_
98	HSMC_CLKIN_n1	differential clock input	LVDS or VCCIO	PIN_L23
101	HSMC_TX_p8	LVDS TX bit 8 or CMOS I/O	LVDS or VCCIO	PIN_A36
102	HSMC_RX_p8	LVDS RX bit 8 or CMOS I/O	LVDS or VCCIO	PIN_B22
103	HSMC_TX_n8	LVDS TX bit 8n or CMOS I/O	LVDS or VCCIO	PIN_A37
104	HSMC_RX_n8	LVDS RX bit 8n or CMOS I/O	LVDS or VCCIO	PIN_A22
107	HSMC_TX_p9	LVDS TX bit 9 or CMOS I/O	LVDS or VCCIO	PIN_A34
108	HSMC_RX_p9	LVDS RX bit 9 or CMOS I/O	LVDS or VCCIO	PIN_M26
100				

158	HSMC_CLKIN_n2	differential clock input	LVDS or VCCIO	PIN_P32
157	HSMC_CLKOUT_n2	differential clock input/output LVDS RX or CMOS I/O or	LVDS or VCCIO	PIN_N34
156	HSMC_CLKIN_p2	LVDS RX or CMOS I/O or differential clock input LVDS TX or CMOS I/O or	LVDS or VCCIO	PIN_R32
155	HSMC_CLKOUT_p2	LVDS TX or CMOS I/O or differential clock input/output	LVDS or VCCIO	PIN_P34
152	HSMC_RX_n16	LVDS RX bit 16n or CMOS I/O	LVDS or VCCIO	PIN_E31
151	HSMC_TX_n16	LVDS TX bit 16n or CMOS I/O	LVDS or VCCIO	PIN_M33
150	HSMC_RX_p16	LVDS RX bit 16 or CMOS I/O	LVDS or VCCIO	PIN_E30
149	HSMC_TX_p16	LVDS TX bit 16 or CMOS I/O	LVDS or VCCIO	PIN_N33
146	HSMC_RX_n15	LVDS RX bit 15n or CMOS I/O	LVDS or VCCIO	PIN_F24
145	HSMC_TX_n15	LVDS TX bit 15n or CMOS I/O	LVDS or VCCIO	PIN_T31
144	HSMC_RX_p15	LVDS RX bit 15 or CMOS I/O	LVDS or VCCIO	PIN_G24
143	HSMC_TX_p15	LVDS TX bit 15 or CMOS I/O	LVDS or VCCIO	PIN_U31
140	HSMC_RX_n14	LVDS RX bit 14n or CMOS I/O	LVDS or VCCIO	PIN_M30
139	HSMC_TX_n14	LVDS TX bit 14n or CMOS I/O	LVDS or VCCIO	PIN_J31
138	HSMC_RX_p14	LVDS RX bit 14 or CMOS I/O	LVDS or VCCIO	PIN_N30
137	HSMC_TX_p14	LVDS TX bit 14 or CMOS I/O	LVDS or VCCIO	PIN_K31
134	HSMC_RX_n13	LVDS RX bit 13n or CMOS I/O	LVDS or VCCIO	PIN_E25
133	HSMC_TX_n13	LVDS TX bit 13n or CMOS I/O	LVDS or VCCIO	PIN_F30
132	HSMC_RX_p13	LVDS RX bit 13 or CMOS I/O	LVDS or VCCIO	PIN_E24
131	HSMC_TX_p13	LVDS TX bit 13 or CMOS I/O	LVDS or VCCIO	PIN_G30
128	HSMC_RX_n12	LVDS RX bit 12n or CMOS I/O	LVDS or VCCIO	PIN_J30
127	HSMC_TX_n12	LVDS TX bit 12n or CMOS I/O	LVDS or VCCIO	PIN_L30
126	HSMC_RX_p12	LVDS RX bit 12 or CMOS I/O	LVDS or VCCIO	PIN_K30
125	HSMC_TX_p12	LVDS TX bit 12 or CMOS I/O	LVDS or VCCIO	PIN_L31
122	HSMC_RX_n11	LVDS RX bit 11n or CMOS I/O	LVDS or VCCIO	PIN_G29
121	HSMC_TX_n11	LVDS TX bit 11n or CMOS I/O	LVDS or VCCIO	PIN_C30
120	HSMC_RX_p11	LVDS RX bit 11 or CMOS I/O	LVDS or VCCIO	PIN_H29
119	HSMC_TX_p11	LVDS TX bit 11 or CMOS I/O	LVDS or VCCIO	PIN_D30
116	HSMC_RX_n10	LVDS RX bit 10n or CMOS I/O	LVDS or VCCIO	PIN_J27
115	HSMC_TX_n10	LVDS TX bit 10n or CMOS I/O	LVDS or VCCIO	PIN_A32
114	HSMC_RX_p10	LVDS RX bit 10 or CMOS I/O	LVDS or VCCIO	PIN_K27
113	HSMC_TX_p10	LVDS TX bit 10 or CMOS I/O	LVDS or VCCIO	PIN_B32
110	HSMC_RX_n9	LVDS RX bit 9n or CMOS I/O	LVDS or VCCIO	PIN_L26
109	HSMC_TX_n9	LVDS TX bit 9n or CMOS I/O	LVDS or VCCIO	PIN_A35

Note for Table 2–22:

*The signals E_HSMC_SDA and E_HSMC_SCL are level-shifted from 3.3V (HSMC) to VCCIO_HSMC (FPGA).

Chapter 3

System Builder

This chapter describes how users can create a custom design project on the FPGA board by using the Software Tools – System Builder.

3.1 Introduction

The System Builder is a Windows based software utility, designed to assist users to create a Quartus II project for the FPGA board within minutes. The generated Quartus II project files include:

- Quartus II Project File (.qpf)
- Quartus II Setting File (.qsf)
- Top-Level Design File (.v)
- External PLL Controller (.v)
- Synopsis Design Constraints file (.sdc)
- Pin Assignment Document (.htm)

The System Builder not only can generate the files above, but can also provide error-checking rules to handle situation that are prone to errors. The common mistakes that users encounter are the following:

- Board damaged for wrong pin/bank voltage assignment.
- Board malfunction caused by wrong device connections or missing pin counts for connected ends.
- Performance dropped because of improper pin assignments

3.2 General Design Flow

This section will introduce the general design flow to build a project for the FPGA board via the System Builder. The general design flow is illustrated in the **Figure 3-1**.

Users should launch System Builder and create a new project according to their design requirements. When users complete the settings, the System Builder will generate two major files which include top-level design file (.v) and the Quartus II setting file (.qsf).

The top-level design file contains top-level Verilog wrapper for users to add their own design/logic. The Quartus II setting file contains information such as FPGA device type, top-level pin assignment, and I/O standard for each user-defined I/O pin.

Finally, Quartus II programmer must be used to download SOF file to the FPGA board using JTAG interface.

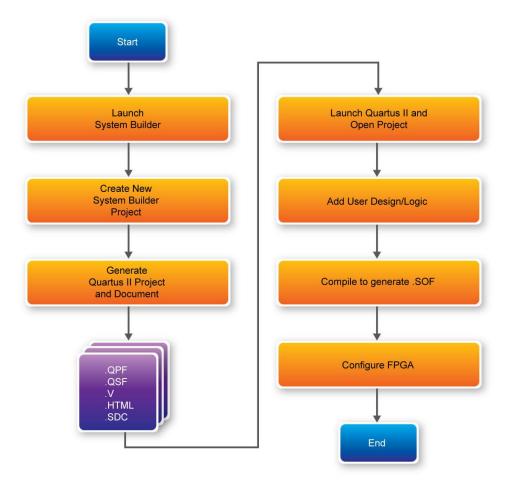


Figure 3-1 The general design flow of building a design

3.3 Using System Builder

This section provides the detail procedures on how the System Builder is used.

■ Install and launch the System Builder

The System Builder is located in the directory: "Tools\SystemBuilder" in the System CD. Users can copy the whole folder to a host computer without installing the utility. Before using the System Builder, execute the SystemBuilder.exe on the host computer as appears in Figure 3-2.

Figure 3-2 The System Builder window

■ Select Board Type and Input Project Name

Select the target board type and input project name as show in Figure 3-3.

 Project Name: Specify the project name as it is automatically assigned to the name of the top-level design entity.

Figure 3-3 Quartus II Project Name

■ System Configuration

Under System Configuration users are given the flexibility of enabling their choice of components on the FPGA as shown in **Figure 3-4**. Each component of the FPGA board is listed where users can enable or disable a component according to their design by simply marking a check or removing the check in the field provided. If the component is enabled, the System Builder will automatically generate the associated pin assignments including the pin name, pin location, pin direction, and I/O standards.

Note: The pin assignments for some components (e.g. SFP+) require associated controller codes in the Quartus project otherwise Quartus will result in compilation errors. Therefore, do not select them if they are not necessary in your design.

Figure 3-4 System Configuration Group

■ Programmable Oscillator

There are two external oscillators on-board that provide reference clocks for the following signals SFP_REFCLK, SFP1G_REFCLK, SATA_HOST_REFCLK and SATA_DEVICE_REFCLK. To use these oscillators, users can select the desired frequency on the Programmable Oscillator group, as shown in **Figure 3-5**. SPF+ or SATA should be checked before users can start to specify the desired frequency in the programmable oscillators.

As the Quartus project is created, System Builder automatically generates the associated controller

according to users' desired frequency in Verilog which facilitates users' implementation as no additional control code is required to configure the programmable oscillator.

Note: If users need to dynamically change the frequency, they would need to modify the generated control code themselves.

Figure 3-5 External Programmable Oscillators

■ Project Setting Management

The System Builder also provides functions to restore default setting, loading a setting, and saving users' board configuration file shown in **Figure 3-6**. Users can save the current board configuration information into a .cfg file and load it to the System Builder.

Figure 3-6 Project Settings

■ Project Generation

When users press the **Generate** button, the System Builder will generate the corresponding Quartus II files and documents as listed in the **Table 3-1** in the directory specified by the user.

Table 3-1 Files generated by System Builder

No.	Filename	Description
1	<project name="">.v</project>	Top level Verilog file for Quartus II
2	Si570_controller.v(*)	Si570 External Oscillator controller IP
3	CDCM6100x_Config.v	CDCM61004 External Oscillator controller IP
4	<project name="">.qpf</project>	Quartus II Project File
5	<project name="">.qsf</project>	Quartus II Setting File
6	<project name="">.sdc</project>	Synopsis Design Constraints file for Quartus II
7	<project name="">.htm</project>	Pin Assignment Document

(*) The Si570 Controller includes seven files: Si570_controller.v, initial_config.v, clock_divider.v,

edge_detector.v, i2c_reg_controller.v, i2c_controller.v and i2c_bus_controller.v.

Users can use Quartus II software to add custom logic into the project and compile the project to generate the SRAM Object File (.sof).

For Si570, the Controller will be instantiated in the Quartus II top-level file as listed below:

For CDM61004 configure, the System Builder will generate the CDCM6100x_Config and instantiates it in the Quartus II top-level file as listed below:


```
// Configure CDCM61004 as 150.00 MHz ============
wire [3:0] desired_freq;
//assign desired_freq = 4'd0; // 62.5 MHz
//assign desired_freq = 4'd1; // 75 MHz
//assign desired freq = 4'd2; // 100 MHz
//assign desired freq = 4'd3; // 125 MHz
assign desired freq = 4'd4; // 150
//assign desired freq = 4'd5; // 156.25 MHz
//assign desired freq = 4'd6; // 187.5 MHz
//assign desired freq = 4'd7; // 200 MHz
//assign desired_freq = 4'd8; // 250 MHz
//assign desired_freq = 4'd9; // 312.5
//assign desired_freq = 4'd10; // 625 MHz
CDCM6100x_Config CDCM61004_Config_inst(
  .clk 50m(OSC 50 B3B),
  .recal n(CPU RESET n),
  .desired freq(desired freq),
  .CLK CE(CLK CE),
  .CLK OD (CLK OD) ,
  .CLK OS (CLK OS) ,
  .CLK PR (CLK PR) ,
  .CLK RST_n(CLK RST_n)
```

If dynamic configuration for the oscillator is required, users need to modify the code according to users' desired behavior.

Chapter 4

Flash Programming

As you develop your own project using the Altera tools, you can program the flash memory device so that your own design loads from flash memory into the FPGA on power up. This chapter will describe how to use Altera Quartus II Programmer Tool to program the common flash interface (CFI) flash memory device on the FPGA board. The Stratix V GX FPGA development board ships with the CFI flash device preprogrammed with a default factory FPGA configuration for running the Parallel Flash Loader design example.

4.1 CFI Flash Memory Map

Table 4-1 shows the default memory contents of two interlaced 1Gb (128MB) CFI flash device. Each flash device has a 16-bit data bus and the two combined flash devices allow for a 32-bit flash memory interface. For the factory default code to run correctly and update designs in the user memory, this memory map must not be altered.

Table 4-1 Flash Memory Map (Byte Address)

Block Description	Size(KB)	Address Range
PFL option bits	64	0x00030000 - 0x0003FFFF
Factory hardware	33,280	0x00040000 - 0x020BFFFF
User hardware	33,280	0x020C0000 - 0x0413FFFF
Factory software	8,192	0x04140000 – 0x0493FFFF
User software and data	187,136	0x04940000 – 0x0FFFFFF

For user application, user hardware must be stored with start address 0x020C0000, and the user's software is suggested to be stored with start address 0x04940000. The NIOS II EDS tool nios-2-flash-programmer is used for programming the flash. Before programming, users need to translate their Quartus .sof and NIOS II .elf files into the .flash which is used by the

nios-2-flash-programmer. For .sof to .flash translation, NIOS II EDS tool **sof2flsh** can be used. For the .elf to .flash translation, NIOS II EDS tool **elf2flash** can be used. For convenience, the System CD contains a batch file for file translation and flash programming with users given .sof and .elf file.

4.2 FPGA Configure Operation

Here is the procedure to enable FPGA configuration from Flash:

- 1. Please make sure the FPGA configuration data has been stored in the CFI flash.
- 2. Set the FPGA configuration mode to FPPx32 mode by setting SW7 MSEL[0:4] as 000100.
- 3. Specify the configuration of the FPGA using the default Factory Configuration or User Configuration by setting SW1 according to Figure 4-1.
- 4. Power on the FPGA board or press MAX_RST button if board is already powered on
- 5. When configuration is completed, the green Configure Done LED will light. If there is error, the red Configure Error LED will light.

4.3 Flash Programming with Users Design

Users can program the flash memory device so that a custom design loads from flash memory into the FPGA on power up. For convenience, the translation and programming batch files are available on the Demonstrations/Hello/flash_programming_batch folder in the System CD. There folder contains five files as shown in Table 4-2

Table 4-2 Flash Memory Map (Byte Address)

Files Name	Description
S5_PFL.sof	Parallel Flash Loader Design
flash_program_ub2.bat	Top batch file to download S5_PFL.sof and launch
	batch flash_program_bashrc_ub2
flash_program_bashrc_ub2	Translate .sof and .elf into .flash and programming
	flash with the generated .flash file
Golden_top.sof	Hardware design file for Hello Demo
HELLO_NIOS.elf	Software design file for Hello Demo

To apply the batch file to users' .sof and .elf file, users can change the .sof and .elf filename in the

flash_program_bashrc_ub2 file as shown in Figure 4-1.

```
sof2flash --input_Golden_top.sof --output=flash_hw.flash --offset=0x20C0000 --pflelf2flash --base=0x0 --end=0x0FFFFFFF --reset=0x04940000 --input=HELLO_NIOS.elf --
```

Figure 4-1 Change to users' .sof and .elf filename

If your design does not contain a NIOS II processor, users can add "#" to the beginning of the line to comment (disable) the elf2flash and nios-flash-programmer commands in the flash_program_bashrc_ub2 file in Figure 4-2.

```
#conver to .flash

"$SOPC_KIT_NIOS2/nios2_command_shell.sh" sof2flash --input=Golden_top.sof --output=flash_hw.:

"$SOPC_KIT_NIOS2/nios2_command_shell.sh" elf2flash --base=0x0 --end=0x0FFFFFFF --reset=0x049

\[
\[
\psi \]

#Programming with .flash

"$SOPC_KIT_NIOS2/nios2_command_shell.sh" nios2-flash-programmer --base=0x0 flash hw.flash

"$SOPC_KIT_NIOS2/nios2_command_shell.sh" nios2-flash-programmer --base=0x0 flash_sw.flash
```

Figure 4-2 Add "#" to these lines to disable .elf conversion and programming

If your design includes a NIOS II processor, and the NIOS II program is stored on external memory, users must to perform the following items so the NIOS II program can boot from flash successfully:

- 1. QSYS should include a Flash controller for the CFI Flash on the development board. Please ensure that the base address of the controller is 0x00, as shown in **Figure 4-3**.
- 2. In NIOS II processor options, select FLASH as reset vector memory and specify 0x04940000 as reset vector, as shown in **Figure 4-4**.

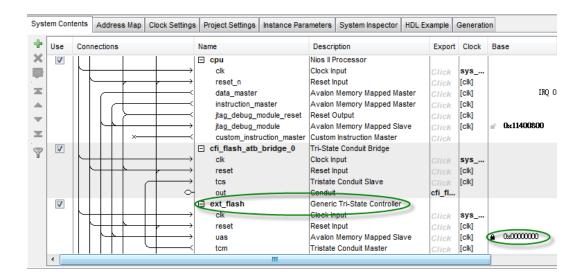


Figure 4-3 Flash Controller Settings in QSYS

Figure 4-4 Reset Vector Settings for NIOS II Processor

For implementation detail, users can refer the Hello example located in the CD folder:

Demonstrations/ Hello

4.4 Restore Factory Settings

This section describes how to restore the original factory contents to the flash memory device on the FPGA development board. Perform the following instructions:

- 1. Make sure the Nios II EDS and USB-Blaster II driver are installed.
- 2. Make sure the FPGA board and PC are connected with an UBS Cable.

- 3. Power on the FPGA board.
- 4. Copy the "Demonstrations/PFL/flash_programming_batch" folder under the CD to your PC's local drive.
- 5. Execute the batch file flash_program_ub2.bat to start flash programming.
- 6. Power off the FPGA Board.
- 7. Set FPGA configure mode as FPPx32 Mode by setting SW7 MSEL[0:4] to 00010.
- 8. Specify configuration of the FPGA to Factory Hardware by setting the FACTORY_LOAD dip in SW5 to the upper position.
- 9. Power on the FPGA Board, and the Configure Done LED should light.

Except for programming the Flash with the default code PFL, the batch file also writes PFL (Parallel Flash Loader) Option Bits data into the address 0x30000. The option bits data specifies 0x20C0000 as start address of your hardware design.

The NIOS II EDS tool **nios-2-flash-programmer** programs the Flash based on the Parallel Flasher Loader design in the FPGA. The Parallel Flash Loader design is included in the default code PFL and the source code is available in the folder Demonstrations/ PFL in System CD.

Chapter 5

Programmable Oscillator

This chapter describes how to program the two programmable oscillators Si570 and CDCM61004 on the FPGA board. Also, RTL-based and Nios-based reference designs are explained in the chapter. The source codes of these examples are all available on the FPGA System CD.

5.1 Overview

This section describes how to program Si570- and CDCM61004. For detail programming information, please refer to their datasheets which are available on the FPGA System CD.

■ Si570

The Si570 utilizes Silicon Laboratories advanced DSPLL® circuitry to provide a low-jitter clock at any frequency. The Si570 are user-programmable to any output frequency from 10 to 945 MHz and select frequencies to 1400 MHz with < 1ppb resolution. The device is programmed via an I2C serial interface. The differential clock output of the Si570 directly connects to dedicated reference clock input of the Stratix V GX transceiver for SFP+ channels. Many applications can be implemented using this function. For example, the 10G Ethernet application can be designed onto this board by feeding a necessary clock frequency of 644.53125MHz or 322.265625MHz from the Si570.

Figure 5-1 shows the block diagram of Si570 device. Users can modify the value of the three registers RFREQ, HS_DIV, and N1 to generate the desired output frequency.

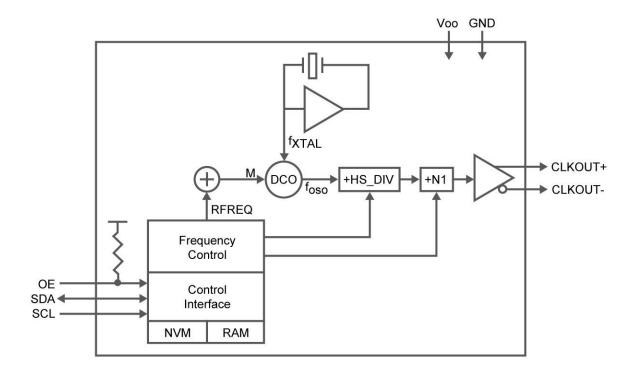


Figure 5-1 Si570 Block diagram

The output frequency is calculated using the following equation:

$$f_{out} = \frac{f_{DCO}}{Output Dividers} = \frac{f_{XTAL} \times RFREQ}{HSDIV \times N1}$$

When Si570 is powered on, the default output frequency is 100 MHz. Users can program the output frequency through the I2C interface using the following procedure.

- 6. Freeze the DCO (bit 4 of Register 137).
- 7. Write the new frequency configuration (RFREQ, HSDIV, and N1) to Register 7 12.
- 8. Unfreeze the DCO and assert the NewFreq bit (bit 6 of Register 135).

The I2C address of Si570 is zero and it supports fast mode operation whose transfer rate is up to 400 kbps. **Table 5-1** shows the register table for Si570.

Table 5-1 Si570 Register Table

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
7	High Speed/N1 Dividers	HS_DIV[2:0	ס		N1[6:2]				
8	Reference Frequency	N1[1:0]		RFREQ[37					
9	Reference Frequency	RFREQ[31:	24]						
10	Reference Frequency	RFREQ[23:16]							
11	Reference Frequency	RFREQ[15:	8]						
12	Reference Frequency	RFREQ[7:0]						
135	Reference Frequency	RST_REG	NewFreq	Freeze M	Freeze VCADC				RECALL
137	Reference Frequency				Freeze DCO				

Table 5-2 lists the register settings for some common used frequency.

Table 5-2 Si570 Register Table

Output	HS_DIV	HS_DIV	NI	NI	REF_CLK
Frequency		Register		Register	Register
(MHz)		Setting		Setting	Setting
100	9	101	6	0000101	02F40135A9(hex)
125	11	111	4	0000011	0302013B65(hex)
156.25	9	101	4	0000011	0313814290(hex)
250	11	111	2	0000001	0302013B65(hex)
312.5	9	101	2	0000001	0313814290(hex)
322.265625	4	000	4	0000011	02D1E127AF(hex)
644.53125	4	000	2	0000001	02D1E127AF(hex)

■ CDCM61004

The FPGA board includes another programmable PLL CDCM61004. The CDCM61004 supports output frequency range from 43.75 MHz to 683.264 MHz. It provides a parallel interface for selecting a desired output frequency. The Stratix V GX FPGA's IOs connect to the interface directly. The differential clock outputs of the CDCM61004 are designed for SFP+ and SATA applications on FPGA board.

When CDCM61004 is powered on, the default output frequency is 100 MHZ. Users can change the output frequency by the following control pins:

- 1. PR0 and PR1
- 2. OD0, OD1, and OD2
- 3. RSTN
- 4. CE
- 5. OS0 and OS1

The following table lists the frequency which CDCM61004 can generate in the FPGA board.

PRESCALLR DIVIDER	FEEDBACK DIVIDER	OUTPUT DEVIDER	OUTPUT FREQUENCY(MHz)	APPLICATION
4	20	8	62.5	GigE
3	24	8	75	SATA
3	24	6	100	PCI Express
4	20	4	125	GigE
3	24	4	150	SATA
3	25	4	156.25	10 GigE
5	15	2	187.5	12 GigE
3	24	3	200	PCI Express
4	20	2	250	GigE
4	20	2	312.5	XGMII
3	25	1	625	10 GigE

The both values of PRESCALER DIVIDER and FEEDBACK DIVIDER can be specified by the PR0 and PR1 control pins according to the following table:

CONTRO	L INPUTS	PRESCALER	FEEDBACK	
PR1	PR0	DIVIDER	DIVIDER	
0	0	3	24	
0	1	5	15	
1	0	3	25	
1	1	4	20	

The value of OUTPUT DIVIDER can be specified by the OD0, OD1 and OD2 control pins according to the following table:

	CONTROL INPUTS				
OD2	OD1	OD0	OUTPUT DIVIDER		
0	0	0	1		
0	0	1	2		
0	1	0	3		
0	1	1	4		
1	0	0	Reserved		
1	0	1	6		
1	1	0	Reserved		
1	1	1	8		

After specifying the desired output frequency in the parallel interface, developers must assert the output enable pin CE and control the RSTN pin to generate a rising signal to start the PLL Recalibration process. In the FPGA board, the required output type is LVDS, so always set OS0 and SO1 to 0 and 1, respectively.

5.2 Si570 Example (RTL)

In this section we will demonstrate how to use the Terasic Si570 Controller implemented in Verilog to control the Si570 programmable oscillator on the FPGA board. This controller IP can configure the Si570 to output a clock with a specific frequency via I2C interface. For demonstration, the output clock is used to implement a counter where the MSB is used to drive an LED, so the user can get the result from the frequency of the LED blinking. We will also introduce the port declarations and associated parameter settings of this IP. **Figure 5-2** shows the block diagram of this demonstration.

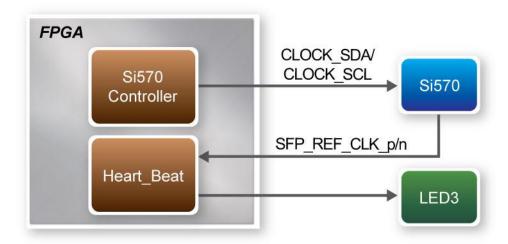


Figure 5-2 Block Diagram of this Demonstration

■ Block Diagrams of Si570 Controller IP

The block diagram of the Si570 controller is shown on **Figure 5-3.** Shown here are four blocks named i2c_reg_controller, i2c_bus_controller, clock_divider and initial_config in Si570 controller IP. Firstly, the i2c_reg_controller will generate an associated Si570 register value for the i2c_bus_controller based on user-desired frequency. Once i2c_bus_controller receives this data, it will transfer these settings to Si570 via serial clock and data bus using I2C protocol. The registers in Si570 will be configured and output the user-desired frequency.

Secondly, the clock_divider block will divide system clock (50 MHz) into 97.6 KHz which is used as I2C interface clock of i2c_bus_controller. Finally, the initial_config block will generate a control signal to drive i2c_reg_controller which allows the Si570 controller to configure Si570 based on default settings.

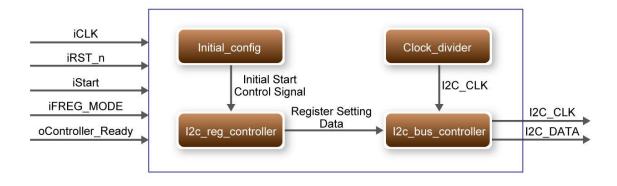


Figure 5-3 Block Diagram of Si570 Controller IP

■ Using Si570 Controller IP

Table 5-3 lists the instruction ports of Si570 Controller IP

Table 5-3 Si570 Controller Instruction Ports

Port	Direction	Description
iCLK	input	System Clock (50Mhz)
iRST_n	input	Synchronous Reset (0: Module Reset, 1: Normal)
iStart	input	Start to Configure (positive edge trigger)
iFREQ_MODE	input	Setting Si570 Output Frequency Value
oController_Ready	output	Si570 Configuration status (0: Configuration in Progress, 1: Configuration Complete)
I2C_DATA	inout	I2C Serial Data to/from Si570
I2C_CLK	output	I2C Serial Clock to Si570

To use the Si570 Controller, the first thing users need to determine is the desired output frequency in advance. The Si570 controller provides six optional clock frequencies. These options can be set through an input port named "iFREQ_MODE" in Si570 controller. The specified settings with corresponding frequencies are listed in **Table 5-4.** For example, setting "iFREQ_MODE" as 3'b110 will configure Si570 to output 655.53 MHz clock.

Table 5-4 Si570 Controller Frequency Setting

iFREQ MODE Setting	Si570 Clock Frequency(MHz)	
3'b000	100	
3'b001	125	
3'b010	156.25	
3'b011	250	
3'b100	312.25	
3'b101	322.26	
3'b110	644.53125	
3'b111	100	

When the output clock frequency is decided, the next thing users need to do is to enable the controller to configure Si570. Before sending the enable signal to the Si570 controller, users need to monitor an output port named "oController_Ready". This port indicates if Si570 controller is ready to be configured or not. If it is ready, logic high will be outputted and the user will need to send a high level logic to "iStart" port to enable the Si570 Controller as shown in **Figure 5-4**. During Si570 configuring, the logic level of "oController_Ready" is low; when it rises to high again that

means the user can configure another frequency value.

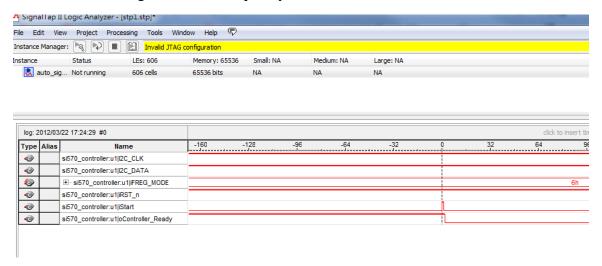


Figure 5-4 Timing Waveform of Si570 Controller

■ Modify Clock Parameter For Your Own Frequency

If all the six clock frequencies are not desired, you can perform the following steps to modify Si570 controller.

- 1. Open i2c_reg_controller.v
- 2. Locate the Verilog code shown below:

```
always @(*)
begin

case(iFREQ_MODE)

3'h0: //100Mhz

begin

new_hs_div = 4'b0101;

new_n1 = 8'b0000_1010;

fdco = 28'h004_E200;

end

3'h1: //125Mhz

begin

new_hs_div = 4'b0101;

new_n1 = 8'b0000_1000;
```



```
fdco = 28'h004\_E200;
  end
3'h2:
        //156.25Mhz
  begin
    new_hs_div = 4'b0100;
    new_n1 = 8'b0000_1000;
    fdco = 28'h004\_E200;
  end
3'h3:
        //250Mhz
  begin
    new_hs_div = 4'b0101;
    new_n1 = 8'b0000_0100;
    fdco = 28'h004\_E200;
  end
3'h4:
        //312.5Mhz
  begin
    new_hs_div = 4'b0100;
    new_n1 = 8'b0000_0100;
    fdco = 28'h004\_E200;
  end
3'h5:
        //322.265625Mhz
  begin
    new_hs_div = 4'b0100;
    new_n1 = 8'b0000_0100;
    fdco = 28'h005_0910;
  end
3'h6:
        //644.53125Mhz
  begin
    new_hs_div = 4'b0100;
    new_n1 = 8'b0000\_0010;
    fdco = 28'h005_0910;
  end
default:
          //100Mhz
  begin
    new_hs_div = 4'b0101;
    new_n1 = 8'b0000_1010;
```



```
fdco = 28'h004_E200 ;
end
endcase
end
```

Users can get a desired frequency output from si570 by modifying these three parameters : **new hs div ,new n1** and **fdco**.

Detailed calculation method is in following equation:

```
fdco = output frequency * new_hs_div * new_n1 * 64
```

There are three constraints for the equation:

```
1. 4850 < output fequency * new_hs_div * new_n1 < 5600
```

- 2. $4 \le new_hs_div \le 11$
- 3. $1 \le new_n 1 \le 128$

For example, you want to get a 133.5 mhz clock, then

```
fdco = 133.5 x 4x 10 x 64 = 341760d = 0x53700
```

Find a mode in this RTL code section and modify these three parameters, as shown below:

```
new_hs_div = 3'b100;
new_n1 = 4'b1010;
fdco = 23'h05_3700;
```

In addition, Silicon Lab also provide the corresponding calculation tool.

Users can refer to the Programmable Oscillator tool (See **Figure 5-5**) mentioned in below link to calculate the values of new_hs_div and new_n1, then, the fdco value can be calcuted with above ftdo equation.

 $\underline{http://www.silabs.com/products/clocksoscillators/oscillators/Pages/oscillator-software-development} \\ \underline{-tools.aspx}$

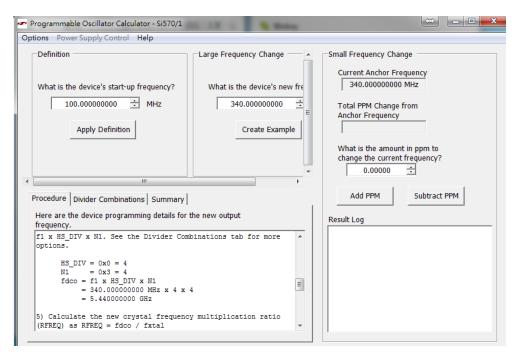


Figure 5-5 Programmable Oscillator Calculator tool

In addition, if the user doesn't want Si570 controller to configure Si570 as soon as the FPGA configuration finishes, users can change settings in Si570_controller.v, shown below.

Changing the setting from ".iINITIAL_ENABLE(1'b1) " to ".iINITIAL_ENABLE(1'b0)" will disable the initialization function of Si570 Controller.

■ Design Tools

Quartus II 14.0

■ Demonstration Source Code

• Project directory: Si570_Demonstration

Bit stream used: Si570_Demonstration.sof

• Demonstration Batch File: test_ub2.bat

• Demo Batch File Folder: Si570_Demonstration \demo_batch

The demo batch file folders include the following files:

• Batch File: test_ub2.bat

• FPGA Configuration File: Si570_Demonstration.sof

■ Demonstration Setup

• Make sure Quartus II is installed on your PC.

- Connect the USB Blaster cable to the FGPA board and host PC. Install the USB Blaster II driver if necessary.
- According to Table 5-5, the output frequency is determined by setting the dip switch SW[2:0]

SW[2:0] Setting Si570 Clock Frequency(MHz) 3'b000 100 3'b001 125 3'b010 156.25 3'b011 250 3'b100 312.25 3'b101 322.26 3'b110 644.53125

100

Table 5-5 Si570 Controller Frequency Setting

- Power on the FPGA board.
- Execute the demo batch file "Si570_Demonstration.bat" under the batch file folder, Si570_Demonstration\demo_batch
- Press **BUTTON1** can reconfigure the Si570.

3'b111

• Observe LED3 status.

5.3 Si570 and CDCM Programming (Nios II)

This demonstration shows how to use the Nios II processor to program both programmable oscillators Si570 and CDCM61004 on the FPGA board. The demonstration also includes a function to monitor system temperature with the on-board temperature sensor.

■ System Block Diagram

Figure 5-6 shows the system block diagram of this demonstration. The system requires a 50 MHz clock provided from the board. The peripheral temperature sensor, Si570 and CDCM61004 are all controlled by Nios II through the PIO controller. The temperature sensor and external PLL Si570 are controlled through I2C interface. The Nios II program toggles the PIO controller to implement the I2C protocol. The CDCM 61004 is programmed through the CDCM6100x_Config IP, and Nios II controls the IP through PIO controllers. The Nios II program is running in the on-chip memory.

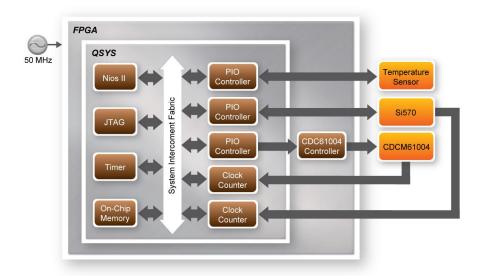


Figure 5-6 Block Diagram of the Nios II Basic Demonstration

The program provides a menu in nios-terminal, as shown in **Figure 5-7** to provide an interactive interface. With the menu, users can perform the test for the temperatures sensor and external PLL.

Note. Inputting choice number should be followed by pressing 'Enter'.

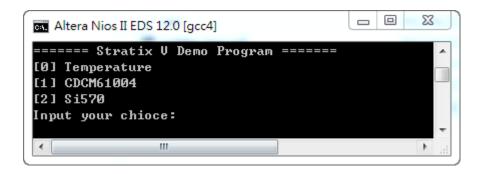


Figure 5-7 Menu of Demo Program

In the temperature test, the program will display local temperature and remote temperature. The remote temperature is the FPGA temperature, and the local temperature the board temperature where the temperature sensor located.

In the external PLL programming test, the program will program the PLL first, and subsequently will use TERASIC QSYS custom CLOCK_COUNTER IP to count the clock count in a specified period to check whether the output frequency is changed as configured. To avoid a Quartus II compilation error, dummy transceiver controllers are created to receive the clock from the external PLL. Users can ignore the functionality of the transceiver controller in the demonstration.

The example uses the CDCM6100x_Config IP which is generated by system builder to programming CDCM61004. The Nios II uses PIO controllers to control the IP. First, Nios II specifies the desired output frequency through IP's **desired_freq** pin, then active the PPL recalibration by toggle IP's **recal_n** pin. For Si570 programming, please note the device I2C address is 0x00. Also, before configuring the output frequency, users must freeze the DCO (bit 4 of Register 137) first. After configuring the output frequency, users must un-freeze the DCO and assert the NewFreq bit (bit 7 of Register 135).

■ Design Tools

- Ouartus II 12.0
- Nios II Eclipse 12.0

■ Demonstration Source Code

- Quartus II Project directory: Nios_BASIC_DEMO
- Nios II Eclipse: Nios_BASIC_DEMO\Software

■ Nios II IDE Project Compilation

• Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is cleaned first by clicking on 'Clean' in the 'Project' menu of Nios II Eclipse.

■ Demonstration Batch File

Demo Batch File Folder: Nios_BASIC_DEMO\demo_batch

The demo batch file includes following files:

- Batch File for USB-Blaster II: test_ub2.bat, test_bashrc_ub2
- FPGA Configure File: TR5_f40w_golden_top.sof
- Nios II Program: Nios_DEMO.elf

■ Demonstration Setup

- Make sure Quartus II and Nios II are installed on your PC.
- Power on the FPGA board.
- Use the USB Cable to connect your PC and the FPGA board and install USB Blaster II driver if necessary.
- Execute the demo batch file "test_ub2.bat" under the batch file folder,
 Nios_BASIC_DEMO\demo_batch
- After the Nios II program is downloaded and executed successfully, a prompt message will be displayed in nios2-terminal.
- For temperature test, please input key '0' and press 'Enter' in the nios-terminal, , as shown in **Figure 5-8**.
- For programming PLL CDCD61004 test, please input key '1' and press 'Enter' in the nios-terminal first, then select the desired output frequency, as shown in **Figure 5-9**.
- For programming PLL Si570 test, please input key '2' and press 'Enter' in the nios-terminal first, then select the desired output frequency, as shown in **Figure 5-10**.

Figure 5-8 Temperature Demo

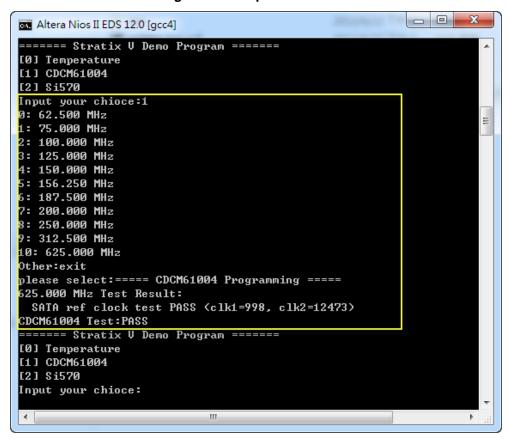


Figure 5-9 CDCM 61004 Demo


```
- - X
Altera Nios II EDS 12.0 [gcc4]
  ===== Stratix V Demo Program ======
[0] Temperature
[1] CDCM61004
[2] Si570
Input your chioce:2
===== Si570 Programming =====
[0] 100.000000 MHz
[0] 100.000000 HHz
[1] 125.000000 HHz
[2] 156.250000 HHz
[3] 250.000000 HHz
[4] 312.500000 HHz
[5] 322.265625 HHz
[6] 644.531250 HHz
[Other] exit
please select:6
HS_DIV=4h, N1=2h, REFEQ:2-d1e127afh
Reg-135, Reset/Freeze/Memory Control:40h
Si570/644.531250MHz clock test PASS (clk1=998, clk2=12866, expected clk2=12864)
Si570 Test:PASS
   ===== Stratix V Demo Program ======
[0] Temperature
[1] CDCM61004
[2] Si570
Input your chioce:
```

Figure 5-10 Si570 Demo

Chapter 6

PCI Express Reference Design

PCI Express is commonly used in consumer, server, and industrial applications, to link motherboard-mounted peripherals. From this demonstration, it will show how the PC and FPGA communicate with each other through the PCI Express interface.

6.1 PCI Express System Infrastructure

The system consists of two primary components, the FPGA hardware implementation and the PC-based application. The FPGA hardware component is developed based on Altera PCIe IP, and the PC-based application is developed under the Jungo driver. **Figure 6-1** shows the system infrastructure. The Terasic PCIe IP license is located in the FPGA System CD under the directory (/CDROM/License/Terasic_PCIe_TX_RX). This license is required in order to compile the PCIe design projects provided below. In case the license expires, please visit the FPGA website (DE5-Net.terasic.com) to acquire and download a new license.

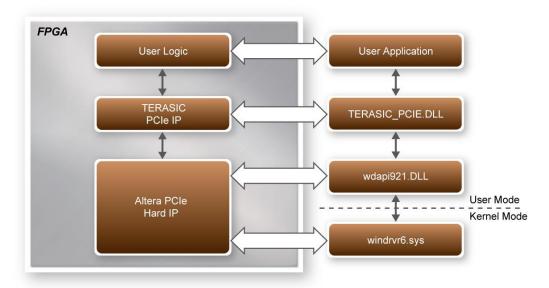


Figure 6-1 PCI Express System Infrastructure

6.2 FPGA PCI Express System Design

The PCI Express edge connector is able to allow interconnection to the PCIe motherboard slots. For basic I/O control, a communication is established through the PCI Express bus where it is able to control the LEDs and monitor the button status of the FPGA board. By implementing an internal RAM and FIFO, the demonstration is capable of direct memory access (DMA) transfers.

■ PCI Express Basic I/O Transaction

Under read operation, the Terasic PCIe IP issues a read signal followed by the address of the data. Once the address is received, a 32-bit data will be sent along with a read valid signal. Under write operation, the PCIe IP issues a write signal accompany with the address to be written. A 32-bit data is written to the corresponding address with a data enable signal of write operation. All the write commands are issued on the same clock cycle. **Table 6-1** lists the associated port names along with the description.

Table 6-1 Single Cycle Transaction Signals of Terasic PCIe IP

Name	Туре	Polarity	Description	
oCORE_CLK	Output	-	Clock. The reference clock output of PCle local interface.	
oSC_RD_ADDR[110]	Output	-	Address bus of read transaction. It is a 32-bit data per address.	

iSC_RD_DATA [310]	Input	-	Read data bus.
oSC_RD_READ	Output	High	Read signal.
iSC_RD_DVAL	Input	High	Read data valid.
oSC_WR_ADDR[110]	Output	-	Address bus of write transaction. It is a 32-bit data per address.
oSC_WR_DATA[310]	Output	-	Write data bus.
oSC_WR_WRITE	Output	High	Write signal.

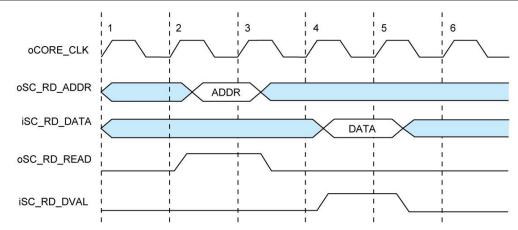


Figure 6-2 Read transaction waveform of the PCle basic I/O interface

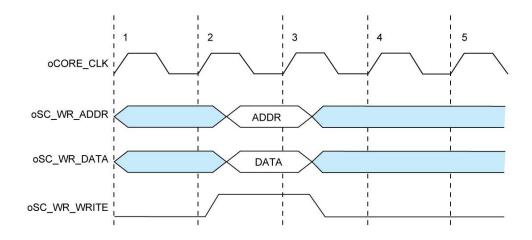


Figure 6-3 Write transaction waveform of the PCIe basic I/O interface

■ PCI Express DMA Transaction

To support greater bandwidth and to improve latency, Terasic PCIe IP provides a high speed DMA channel with two modes of interfaces including memory mapping and FIFO link. The oFIFO_MEM_SEL signal determines the DMA channel used, memory mapping or FIFO link, which is enabled with the assertion of a low and high signal, respectively. The address bus of DMA

indicates the FIFO ID which is defined by user from the PC software API.

Most interfaces experience read latency during the event data is read and processed to the output. To mitigate the overall effects of read latency, minimum delay and timing efficiency is required to enhance the performance of the high-speed DMA transfer. As oDMARD_READ signal is asserted, the read data valid signal oDMARD_RDVALID is inserted high to indicate the data on the iDMARD_DATA data bus is valid to be read after two clock cycles.

Table 6-2 DMA Channel Signals of Terasic PCIe IP

Name	Туре	Polarity	Description
oCORE_CLK	Output	-	Clock. The reference clock output of PCle local interface.
oDMARD_ADDR[310]	Output	-	When oFIFO_MEM_SEL is set to low, it is address bus of DMA transfer and the value of address bus is cumulative by PCIe IP and it is 128-bit data per address. When oFIFO_MEM_SEL is set to high, oDMARD_ADDR bus is a FIFO ID that is used to indicate that which FIFO buffer is selected by PC API.
iDMARD_DATA [1270]	Input	-	Read data bus.
oDMARD_READ	Output	High	Read signal.
oDMARD_RDVALID	Input	High	Read data valid.
oDMAWR_ADDR[310]	Output	When oFIFO_MEM_SEL is set to low, it is address bus of DMA transfer and the value of address bus is cumulative by PCle IP and it is 128-bit data per address. When oFIFO_MEM_SEL is set to high, oDMARD_ADDR bus is FIFO ID that is used to indicate that which FIFO buffer is selected by PC API.	
oDMAWR_DATA[1270]	Output	-	Write data bus.
oDMAWR_WRITE	Output	High	Write signal.
oFIFO_MEM_SEL	Output	-	Indicates that DMA channel is memory mapping interface or FIFO-link interface. When this signal is asserted high, DMA channel FIFO-link interface. When the signal is asserted low, it is memory mapping interface.

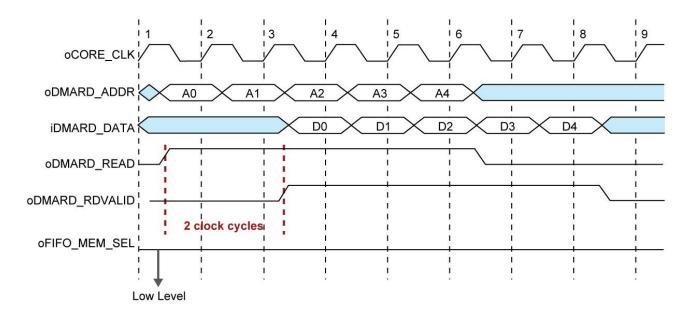


Figure 6-4 Read transaction waveform of the PCIe DMA channel on memory mapping mode

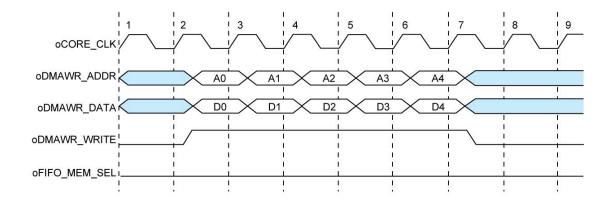


Figure 6-5 Write transaction waveform of the PCIe DMA channel on memory mapping mode

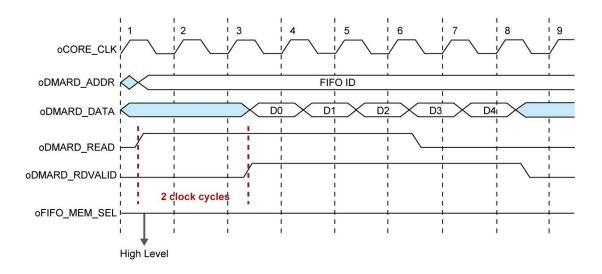


Figure 6-6 Read transaction waveform of the PCIe DMA channel on FIFO-link mode

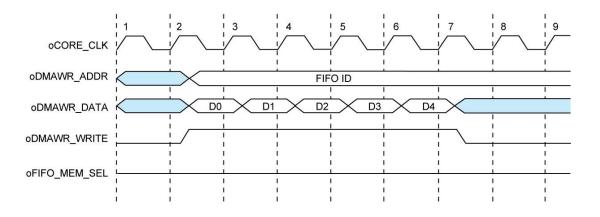


Figure 6-7 Write transaction waveform of the PCle DMA channel on FIFO-link mode

6.3 PC PCI Express System Design

The FPGA System CD contains a PC Windows based SDK to allow users to develop their 32-bits software application on Windows 7/Window XP 32/64-bits. The SDK is located in the "CDROM \demonstrations\PCIe_SW_KIT" folder which includes:

- PCI Express Driver
- PCI Express Library
- PCI Express Examples

The kernel mode driver requires users to modify the PCIe vender ID (VID) and device ID (DID) in the driver INF file to match the design in the FPGA where Windows searches for the associated driver.

The PCI Express Library is implemented as a single DLL called TERASIC_PCIE.DLL (TERASIC_PCIEx64.DLL for 64-bits Windows). With the DLL exported to the software API, users can easily communicate with the FPGA. The library provides the following functions:

- Device Scanning on PCIe Bus
- Basic Data Read and Write
- Data Read and Write by DMA

For high performance data transmission, DMA is required as the read and write operations are specified under the hardware design on the FPGA.

■ PCI Express Software Stack

Figure 6-8 shows the software stack for the PCI Express application software on 32-bits Windows. The PCI Express driver is incorporated in the DLL library called TERASIC_PCIE.dll. Users can develop their application based on this DLL. In 64-bits Windows, TERASIC_PCIE.dll is replaced by TERASIC_PCIEx64.dll, and wdapi921.dll is replaced by wdapi1100.dll.

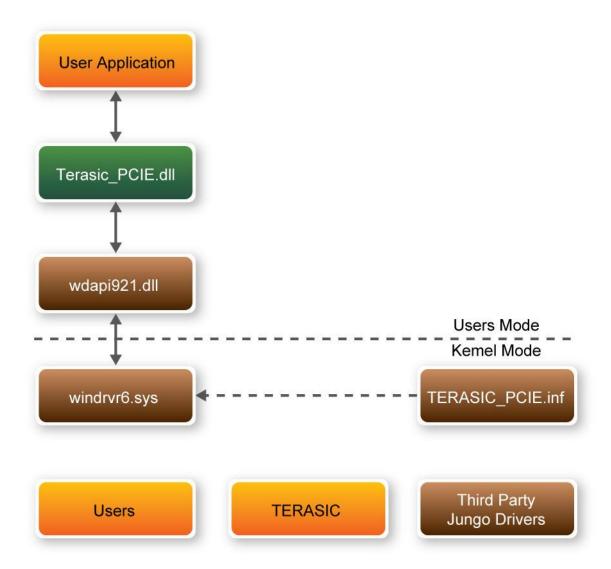


Figure 6-8 PCI Express Software Stack

■ Install PCI Express Driver

To install the PCI Express driver, execute the steps below:

1. From the FPGA system CD locate the PCIe driver folder in the directory \CDROM\demonstrations\PCIe_SW_KIT\PCIe_DriverInstall.

2. Double click the "PCIe_DriverInstall.exe" executable file to launch the installation program shown in **Figure 6-9**.

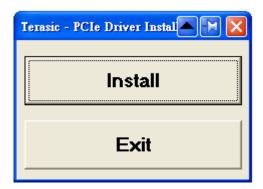


Figure 6-9 PCIe Driver Installation Program

- 3. Click "Install" to begin installation process.
- 4. It takes several seconds to install the driver. When installation is complete, the following dialog window will popup shown in **Figure 6-10**. Click "OK" and then "Exit" to close the installation program.

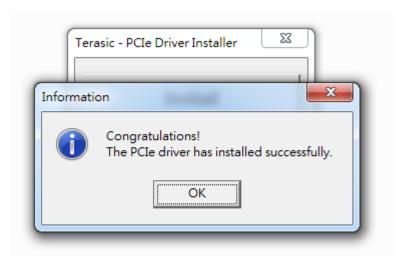


Figure 6-10 PCIe driver installed successfully

5. Once the driver is successfully installed, users can view the device under the device manager window shown in **Figure 6-11**.

Figure 6-11 Device Manager

■ Create a Software Application

All necessary files to create a PCIe software application are located in the *CDROM\demonstration\PCIe_SW_KIT\PCIe_Library* which includes the following files:

- TERASIC_PCIE.h
- TERASIC_PCIE.DLL (for 32-bits Windows)
- TERASIC_PCIEx64.DLL (for 64-bits Windows)
- wdapi921.dll (for 32-bits Windows)
- wdapi1100.dll (for 64-bits Windows)

Below lists the procedures to use the SDK files in users' C/C++ project:

- Create a C/C++ project.
- Include TERASIC PCIE.h in the 32-bits C/C++ project.
- Copy TERASIC_PCIE.DLL (TERASIC_PCIEx64.DLL for 64-bits Windows) to the folder where the project.exe is located.
- Dynamically load TERASIC_PCIE.DLL(TERASIC_PCIEx64 for 64-bits Windows) in C/C++ project. To load the DLL, please refer to two examples below.
- Call the SDK API to implement the desired application.

■ TERASIC_PCIE.DLL/TERASIC_PCIEx64.DLL Software API

Using the TERASIC_PCIE.DLL/TERASIC_PCIEx64.DLL software API, users can easily communicate with the FPGA through the PCIe bus. The API details are described below :

PCIE ScanCard

Function:

Lists the PCIe cards which matches the given vendor ID and device ID. Set Both ID to zero to lists the entire PCIe card.

Prototype:

BOOL PCIE_ScanCard(

WORD wVendorID,

WORD wDeviceID,

DWORD *pdwDeviceNum,

PCIE_CONFIG szConfigList[]);

Parameters:

wVendorID:

Specify the desired vendor ID. A zero value means to ignore the vendor ID.

wDeviceID:

Specify the desired device ID. A zero value means to ignore the produce ID.

pdwDeviceNum:

A buffer to retrieve the number of PCIe card which is matched by the desired vendor ID and product ID.

szConfigList:

A buffer to retrieve the device information of PCIe Card found which is matched by the desired vendor ID and device ID.

Return Value:

Return TRUE if PCIe cards are successfully enumeated; otherwise, FALSE is return.

PCIE_Open

Function:

Open a specified PCIe card with vendor ID, device ID, and matched card index.

Prototype:

PCIE_HANDLE PCIE_Open(

WORD wVendorID,

WORD wDeviceID,

WORD wCardIndex);

Parameters:

wVendorID:

Specify the desired vendor ID. A zero value means to ignore the vendor ID.

wDeviceID:

Specify the desired device ID. A zero value means to ignore the device ID.

wCardIndex:

Specify the matched card index, a zero based index, based on the matched verder ID and device ID.

Return Value:

Return a handle to presents specified PCIe card. A positive value is return if the PCIe card is opened successfully. A value zero means failed to connect the target PCIe card.

This handle value is used as a parameter for other functions, e.g. PCIE_Read32.

Users need to call PCIE_Close to release handle once the handle is no more used.

PCIE_Close

Function:

Close a handle associated to the PCIe card.

Prototype:

void PCIE_Close(

PCIE_HANDLE hPCIE);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

Return Value:

None.

$PCIE_Read32$

Function:

Read a 32-bits data from the FPGA board.

Prototype:

bool PCIE_Read32(

PCIE_HANDLE hPCIE,

PCIE_BAR PcieBar,

PCIE ADDRESS PcieAddress,

DWORD * pdwData);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

PcieBar:

Specify the target BAR.

PcieAddress:

Specify the target address in FPGA.

pdwData:

A buffer to retrieve the 32-bits data.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

PCIE_Write32

Function:

Write a 32-bits data to the FPGA Board.

Prototype:

bool PCIE_Write32(

PCIE_HANDLE hPCIE,

PCIE_BAR PcieBar,

PCIE_ADDRESS PcieAddress,

DWORD dwData);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

PcieBar:

Specify the target BAR.

PcieAddress:

Specify the target address in FPGA.

dwData:

Specify a 32-bits data which will be written to FPGA board.

Return Value:

Return TRUE if write data is successful; otherwise FALSE is returned.

PCIE_DmaRead

Function:

Read data from the memory-mapped memory of FPGA board in DMA function.

Prototype:

```
bool PCIE_DmaRead(
PCIE_HANDLE hPCIE,
PCIE_LOCAL_ADDRESS LocalAddress,
void *pBuffer,
DWORD dwBufSize
);
```

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory-mapped address in FPGA.

pBuffer:

A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer should be equal or larger the dwBufSize.

dwBufSize:

Specify the byte number of data retrieved from FPGA.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

PCIE_DmaWrite

Function:

Write data to the memory-mapped memory of FPGA board in DMA function.

Prototype:

```
bool PCIE_DmaWrite(
PCIE_HANDLE hPCIE,
PCIE_LOCAL_ADDRESS LocalAddress,
void *pData,
```


DWORD dwDataSize

);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

LocalAddress:

Specify the target memory mapped address in FPGA.

pData:

A pointer to a memory buffer to store the data which will be written to FPGA.

dwDataSize:

Specify the byte number of data which will be written to FPGA.

Return Value:

Return TRUE if write data is successful; otherwise FALSE is returned.

PCIE DmaFifoRead

Function:

Read data from the memory fifo of FPGA board in DMA function.

Prototype:

bool PCIE_DmaFifoRead(

PCIE HANDLE hPCIE,

PCIE_LOCAL_FIFO_ID LocalFifoId,

void *pBuffer,

DWORD dwBufSize

);

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

LocalFifoId:

Specify the target memory fifo ID in FPGA.

pBuffer:

A pointer to a memory buffer to retrieved the data from FPGA. The size of buffer should be equal or larger the dwBufSize.

dwBufSize:

Specify the byte number of data retrieved from FPGA.

Return Value:

Return TRUE if read data is successful; otherwise FALSE is returned.

PCIE_DmaFifoWrite

Function:

Write data to the memory fifo of FPGA board in DMA function.

Prototype:

```
bool PCIE_DmaFifoWrite(
PCIE_HANDLE hPCIE,
PCIE_LOCAL_FIFO_ID LocalFifoId,
void *pData,
DWORD dwDataSize
);
```

Parameters:

hPCIE:

A PCIe handle return by PCIE_Open function.

LocalFifoId:

Specify the target memory fifo ID in FPGA.

pData:

A pointer to a memory buffer to store the data which will be written to FPGA.

dwDataSize:

Specify the byte number of data which will be written to FPGA.

Return Value:

Return TRUE if write data is successful; otherwise FALSE is returned.

6.4 Fundamental Communication

The application reference design shows how to implement fundamental control and data transfer. In the design, basic I/O is used to control the BUTTON and LED on the FPGA board. High-speed data transfer is performed by DMA. Both Memory-Mapped and FIFO memory types are demonstrated in the reference design. The demonstration also lists the associated PCIe cards.

■ Demonstration Files Location

The demo file is located in the folder: CDRAOM\demonstrations\PCIE_Fundamental\Demo_batch

The folder includes following files:

- PC Application Software: PCIe_Fundamental_Demo.exe
- FPGA Configuration File: PCIE Fundamental.sof
- PCIe Library: TERASIC_PCIE.DLL and wapi921.dll (TERASIC_PCIEx64.DLL and wapi1100.dll for 64-bits Windows)
- Demo Batch File: test.bat

■ Demonstration Setup

- Install the FPGA board on your PC.
- Download the PCIE_Fundamental.sof into the FPGA board using Quartus II Programmer.
- Restart Windows
- Install PCIe driver if necessary. The driver is located in the folder CDROM\demonstration \PCIe_SW_KIT\PCIe_DriverInstall.
- Launch the demo program PCIe_Fundamental_Demo.exe shown in Figure 6-12.



Figure 6-12

- Make sure the 'Selected FPGA Board' appear as the target board "VID=1172, DID=E001".
- Press Button0-3 on the FPGA board and click the Read Status in this application software.
- Check/Uncheck the LED0-3 in this application software, then click 'Set LED'. The LED in the FPGA board will change.
- Click 'Memory-Mapped Write and Read' to test memory –mapped DMA. A report dialog will appear when the DMA process is completed.
- Click 'FIFO Write and Read' to test FIFO DMA. A report dialog box will appear when the DMA process is completed.
- The 'Custom Registers Group' is used to test custom design register on the FPGA side. Users can use this function to verify custom register design.

■ Demonstration Setup

- Quartus II 12.0
- Borland C++ Builder 6.0

■ Demonstration Source Code Location

- Quartus Project: PCIE_Fundamental
- Borland C++ Project: PCIe_SW_KIT/PCIe_Fundamental

■ FPGA Application Design

The PCI Express demonstration uses the basic I/O interface and DMA channel on the Terasic PCIe IP to control I/O (Button/LED) and access two internal memories (RAM/FIFO) through the MUX block.

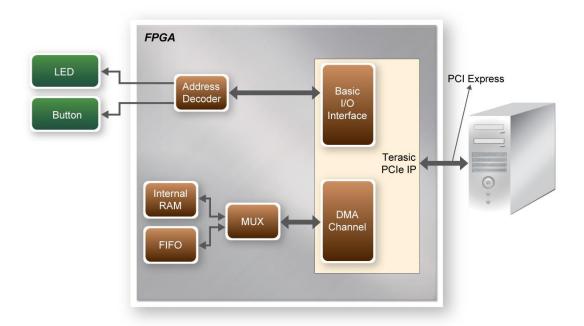


Figure 6-13 Hardware block diagram of the PCle reference design

■ PC Application Design

The application shows how to call the TERASIC_PCIE.DLL (TERAISC_PCIEx64.DLL under 64-bits Windows) exported API. To enumerate all PCIe cards in system call, the software design defines some constant based on FPGA design shown below:

The vender ID is defined as 0x1172 and the device ID is defined as 0xE001. The BUTTON/LED register address is 0x04 based on PCIE_BAR1.

A C++ class **PCIE** is designed to encapsulate the DLL dynamic loading for TERASIC_PCIE.DLL (loading TERAISC_PCIEx64.DLL under 64-bits Windows). A PCIE instance is created with the name **m_hPCIE**. To enumerate all PCIe cards in system, call the function

m hPCIE.ScanCard(wVendorID, wDeviceID, &dwDeviceNum, m szPcieInfo);

where wVendorID and wDeviceID are zeros. The return value dwDeviceNum represents the number of PCIe cards found in the system. The m_szPcieInfo array contains the detail information for each PCIe card.

To connect the selected PCIe card, the functions are called:

```
int nSel = ComboBoxBoard->ItemIndex;
WORD VID = m_szPcieInfo[nSel].VendorID;
WORD DID = m_szPcieInfo[nSel].DeviceID;
bSuccess = m_hPCIE.Open(VID,DID,0); //0: first matched board
```

where nSel is selected index in the 'Selected FPGA Board' poll-down menu. Based on the return m_szPcieInfo, we can find the associated PID and DID which can use to specify the target PCIe card.

To read the BUTTON status, the function is called:

```
m_hPCIE.Read32(DEMO_PCIE_USER_BAR, DEMO_PCIE_IO_ADDR, &dwData);
```

To set LED status, the function is called:

```
m hPCIE.Write32 (DEMO PCIE USER BAR, DEMO PCIE IO ADDR, dwData);
```

To write and read memory-mapped memory, call the functions:

```
// write
bSuccess = m_hPCIE.DmaWrite(LocalAddr, pWrite, nTestSize);
if (bSuccess) {
    // read
    bSuccess = m_hPCIE.DmaRead(LocalAddr, pRead, nTestSize);
}
```

To write and read FIFO memory, call the functions:

```
// write
bSuccess = m_hPCIE.DmaFifoWrite(FifoID, pWrite, nTestSize);
if (bSuccess)(
    // read
    bSuccess = m_hPCIE.DmaFifoRead(FifoID, pRead, nTestSize);
}
```


6.5 Example 2: Image Process Application

This example shows how to utilize computing power of the FPGA for image processing. The application demonstrates the 'invert' image processing by utilizing the FPGA. The PC and FPGA source code of the application layer are all available in the FPGA system CD, allowing users to easily extent the image process function based on this fundamental reference design.

In the demonstration, a memory-mapped memory is designed in the FPGA to work as an image frame buffer. The memory size is 320x240x3 bytes with start address 0x00. The raw image is downloaded to and uploaded from FPGA by DMA. The image process command and status is controlled by a register which can be accessed from the PC by basic IO control. The register address is 0x10 under PCIE BAR1. Writing any value into this register will start the image process. The status of the image process is reported by a read to this register. The PCIe vender ID and device ID is 0x1172 and 0xE001, respectively. The block diagram of FPGA PCIe design is shown in **Figure 6-14**.

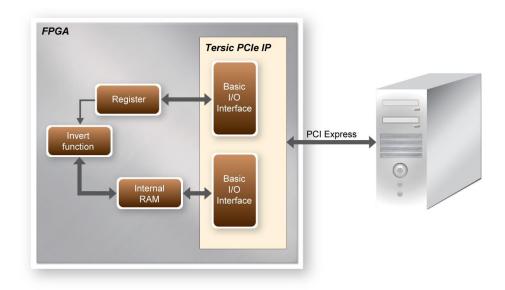
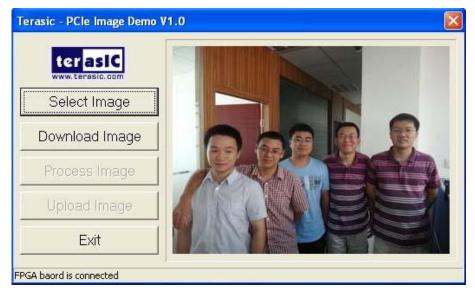


Figure 6-14 Block Diagram of Image Process in FPGA

■ Demonstration Files Location

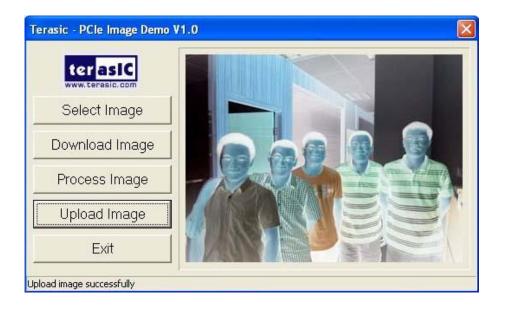
The demo file is located in the folder: PCIE_ImageProcess\demo_batch

The folder includes following files:



- PC Application Software: PCIe_Image_Demo.exe
- FPGA Configuration File: PCIe_ImageProcess.sof
- PCIe Library: TERASIC_PCIE.DLL and wapi921.dll (TERASIC_PCIEx64.DLL and wapi1100.dll for 64-bits Windows)
- Demo Batch File: test.bat

■ Demonstration Setup


- Installed the FPGA board on your PC.
- Locate demo folder: PCIE_ImageProcess\Demo_batch
- Download PCIe_ImageProcess.sof into the FPGA board using Quartus II Programmer.
- Restart Windows.
- Installed PCIe driver if necessary. The driver is located in the folder CDROM\demonstration\PCIe_SW_KIT\PCIe_DriverInstall
- Launch demo program PCIe_Image_Demo.exe
- Click "Select Image" to select a bitmap or jpeg file for image processing.

- Click "Download Image" to download image raw data into the local memory of FPGA.
- Click "Process Image" to trigger 'invert' image process.
- Click "Upload Image" to upload image to PC from local memory of FPGA to be displayed on the window demo application.

Design Tools

- Quartus II 12.0
- Borland C++ Builder 6.0

■ Demonstration Source Code Location

- Quartus Project: PCIE_ImageProcess
- Borland C++ Project: PCIe_SW_KIT\PCIE_ImageProcess

■ FPGA Application Design

This demonstration uses the DMA channel of PCIe IP to download/upload the image into the internal RAM of FPGA, and controls the user register that switches the function which inverts the image data from the internal RAM.

■ PC Application Design

The software design defines some constant based on FPGA design as shown below:

The vender ID is defined as 0x1172 and the device ID is defined as 0xE001. The image dimension is defined as 320x240. The register address is 0x10 and memory address is 0x00.

A C++ class **PCIE** is designed to encapsulate the DLL dynamic loading for TERASIC_PCIE.DLL (loading TERAISC_PCIEx64.DLL under 64-bits Windows). A PCIE instance is created with the name **m_hPCIE**. To open a connection with FPGA the function is called:

```
m_hPCIE.Open(PCIE_VID,PCIE_DID,0); //0: first matched board
```

To download the raw image from PC to FPGA memory, the function is called:

```
m_hPCIE.DmaWrite(DEMO_IMAGE_DATA_ADDR, pImage, nImageSize);
```

where pImage is a pointer of the image raw data, and the nImageSize specifies the image size. In this reference design, nImageSize = 320x240x3 byte.

To start the image process, the function is called:

```
m_hPCIE.Write32(DEMO_PCIE_USER_BAR, DEMO_IMAGE_REG_ADDR, 1);
```

The image process is started whenever the register is written with any value.

To check whether the image process is finished, the control register is monitored by calling the function:

```
m_hPCIE.Read32(DEMO_PCIE_USER_BAR, DEMO_IMAGE_REG_ADDR, &dwStatus);
```

When the image process is finished, the value of dwStatus becomes zero.

To update the processed image from FPGA memory to PC, the function is called:

m_hPCIE.DmaRead(DEMO_IMAGE_DATA_ADDR, pImage, nImageSize);

Additional Information

Getting Help

Here are the addresses where you can get help if you encounter problems:

Terasic Technologies

9F., No.176, Sec.2, Gongdao 5th Rd,

East Dist, HsinChu City, 30070. Taiwan, 30070

Email: support@terasic.com

Web: www.terasic.com

TR5-F40W Web: TR5-F40W.terasic.com

Revision History

Date	Version	Changes
2012.7	First publication	
2012.11	V1.01	Update SI570 Parameter
2014.08	V1.1	Update section 5.2 for modifying
		si570 function

