- Obecnie brak na stanie
Andrzej Witkowski
Książka opisuje środowisko programistyczne będące zestawem dostępnych za darmo narzędzi zbudowanym wokół avr-gcc - kompilatora GNU C dla procesorów AVR. Jest ona przeznaczona dla wszystkich, którzy tworzą lub chcą tworzyć napisane w języku C programy dla mikrokontrolerów AVR. W szczególności jest ona skierowana do studentów kierunków elektronicznych i elektrycznych oraz hobbystów budujących urządzenia z mikrokontrolerami AVR. Mogą z niej skorzystać również czytelnicy zawodowo zajmujący się programowaniem mikrokontrolerów oraz ci wszyscy, którzy programując je dotychczas w Asemblerze, chcą rozszerzyć swoje umiejętności.
Spis treści
1. Wstęp
1.1. Podstawowe informacje
1.2. Struktura książki
1.3. Źródła informacji
2. Środowisko programistyczne GNU C
2.1. Wprowadzenie
2.2. Programy składowe środowiska
2.2.1. Pakiet Gnu Binutiis
2.2.2. Pakiet GCC
2.2.3. Biblioteka avr-libc
2.2.4. Program make
2.2.5. Programatory
2.2.6. Narzędzia uruchomieniowe
2.2.7. Asemblery
2.2.8. Programy pomocnicze
2.3. Instalacja
2.3.1. System Windows
2.3.2. System Linux
2.4. Biblioteka avr-libc
2.4.1. Kod startowy
2.4.2. Definicje nazw rejestrów specjalnych i flag bitowych
2.4.3. Biblioteka matematyczna
2.4.4. Standardowa biblioteka C
2.4.5. Makra i funkcje ułatwiające korzystanie z układów peryferyjnych
2.5. Kompilator gcc
2.5.1. Zasada działania
2.5.2. Typy plików
2.5.3. Opcje
2.5.3.1. Opcje kompilatora specyficzne dla procesorów AVR
2.5.3.2. Opcje kontrolujące rodzaj wyniku
2.5.3.3. Opcje ustalające dialekt C
2.5.3.4. Opcje włączające lub wyłączające uwagi i informacje o błędach
2.5.3.5. Opcje dla debuggera
2.5.3.6. Opcje optymalizacji
2.5.3.7. Opcje dotyczące katalogów
2.5.3.8. Opcje ustalające sposób generowania kodu
2.5.3.9. Opcje preprocesora
2.5.3.10. Opcje asemblera
2.5.3.11. Opcje konsolidatora
2.5.4. Atrybuty zmiennych i funkcji
2.6. Program make
2.6.1. Zasada działania
2.6.2. Zależności
2.6.3. Zmienne
2.7. Program AVRDUDE
2.7.1. Opcje linii poleceń
2.7.2. avrdude-gui
3. Język C dla procesorów AVR
3.1. Wprowadzenie
3.2. Operacje na zmiennych i rejestrach specjalnych
3.3. Operacje na zmiennych bitowych
3.4. Zmienne volatile
3.5. Odwołania do różnych rodzajów pamięci
3.5.1. Przestrzenie adresowe
3.5.2. Pamięć EEPROM
3.5.3. Pamięć Flash
3.6. Obsługa przerwań
3.6.1. Deklaracje funkcji obsługi przerwań
3.6.2. Hierarchia przerwań
3.6.3. Korzystnie z tych samych zmiennych w przerwaniach i w programie głównym
3.6.4. Korzystanie w przerwaniach ze zmiennych globalnych
3.7. Modyfikacje kodu startowego
3.8. Asembler
3.8.1. Zasady przydzielenia rejestrów przez kompilator
3.8.2. Asembler as
3.8.2.1. Komentarze
3.8.2.2. Wyrażenia
3.8.2.3. Etykiety
3.8.2.4. Dyrektywy
3.8.2.5. Preprocesor cpp
3.8.2.6. Przykładowy kod w Asemblerze dołączany do C
3.8.3. Wstawki w Asemblerze
3.8.3.1. Instrukcja asm
3.8.3.2. Operandy
3.8.3.3. Przykłady zastosowania
4. Tworzenie programu
4.1. Podstawowe zasady
4.2. Tworzenie i kompilacja projektu
4.2.1. AVR Studio
4.2.2. Generator plików makefile Mfile
4.2.3. Szablon plików makefile z WinAVR
4.3. Przykładowy program
4.4. Kompilacja przykładowego programu
4.4.1. AVR Studio
4.4.2. Linia poleceń
4.5. Pliki projektu
5. Przykłady zastosowań
5.1. Wprowadzenie
5.2. Obsługa klawiatury matrycowej
5.2.1. Opis aplikacji
5.2.2. Implementacja
5.3. Wymiana danych przez interfejs szeregowy
5.3.1. Opis aplikacji
5.3.2. Implementacja
5.4. Alfanumeryczny wyświetlacz LCD
5.4.1. Opis aplikacji
5.4.2. Implementacja
5.5. Obsługa klawiatury w przerwaniach
5.5.1. Opis aplikacji
5.5.2. Implementacja
5.6. Obsługa klawiatury i wyświetlacza LED
5.6.1. Opis aplikacji
5.6.2. Implementacja
5.7. Komunikacja pomiędzy wieloma urządzeniami
5.7.1. Interfejs RS-485
5.7.2. Opis protokołu
5.7.2.1. Formaty ramki danych
5.7.2.2. Obsługa błędów
5.7.3. Sesja komunikacyjna
5.7.4. Implementacja
5.7.4.1. Stałe i zmienne używane w programie
5.7.4.2. Układ nadrzędny
5.7.4.3. Układ podrzędny
5.7.5. Zależności czasowe
5.7.5.1. Odmierzanie przerwy pomiędzy znakami wewnątrz ramki
5.7.5.2. Odmierzanie przerwy pomiędzy ramkami z żądaniem odpowiedzi i danymi,
5.7.5.3. Odmierzanie przerwy pomiędzy ramkami przez układ podrzędny
5.7.6. Wymiana danych
Załącznik
Literatura
Indeks alfabetyczny
Rozszerzenie dla komputerów Odroid C1, C1+ C0, ekran 3,2" TFT z panelem dotykowym
Brak towaru
Moduł z układem 74LVC245AD pozwala łączyć systemy o różnych napięciach zasilania. Dwukierunkowy tryb pracy pozwala na zmianę wyjścia na wejście za pomocą zworki lub wejścia DIR, bez konieczności rozłączania układu. MOD-12.Z
Brak towaru
Oto magiczny schowek lub etui, które wniesie szczyptę mechanizacyjnej magii do Twojego biura lub domu. Etui może służyć jako ruchomy wizytownik, schowek na karty kredytowe lub miejsce, gdzie przechowuje się drobne, często znikające gdzieś drobiazgi. Ten model 3D jest wykonany ze sklejki o wysokiej jakości, sprawdzonej przez europejskie laboratoria. UGears 70001
Brak towaru
Brak towaru
Cytron USB to UART Converter CH340 - konwerter USB - UART oparty na układzie CH340
Brak towaru
Brak towaru
Odroid XU4 to komputer z procesorem Samsung Exynos5422 Octa oparty na nowej technologii Heterogeneous Multi-Processing (HMP), czyli heterogenicznej wieloprocesorowości.
Brak towaru
Brak towaru
Orange Pi Plus 2 to komputer z SoC Alwinner H3 (4 rdzenie Cortex-A7, Mali400MP2 GPU), 2 GB RAM, 16 GB eMMC Flash, 1 Gb Ethernet, WiFi 802.11 b/g/n. Dostępne są 4 porty USB 2.0, port USB OTG, złącze GPIO 2x20 kompatybilne z Raspberry Pi 2 oraz gniazdo kart micro-SD.
Brak towaru
ACS711 Current Sensor Carrier -12.5 to +12.5A
Brak towaru
Adafruit 1039 - Pi Holder milled aluminum case for Raspberry Pi with logo
Brak towaru
Brak towaru
Brak towaru
Magnes trwały neodymowy walcowy o średnicy 6 mm i wysokości 4 mm.
Brak towaru
Orange Pi Prime to minikomputer z wydajnym procesorem Allwinner H5 (ARM Cortex-A53). Komputer jest wyposażony w gigabitowy Ethernet, 2 GB pamięci RAM DDR3, moduł WiFi, złącze kamery CSI, USB Host, OTG, 26 GPIO, odbiornik podczerwieni i złącze na kartę microSD. Współpracuje z systemami Android, Ubuntu, Debian
Brak towaru
Brak towaru
Andrzej Witkowski