- Obecnie brak na stanie
O książce
W książce zaprezentowano zastosowanie metod polowych przy ocenianiu przekładników na etapie projektowania. Metody numeryczne stwarzają możliwość dokładniejszego obliczania parametrów niż metody analityczne i umożliwiają lepszą ocenę właściwości metrologicznych przekładników przed wykonaniem (często bardzo kosztownego) prototypu i jego badań. Wyniki otrzymane metodami polowymi zostały zweryfikowane doświadczalnie na modelach fizycznych.Spis treści
PRZEDMOWA
WYKAZ WAŻNIEJSZYCH OZNACZEŃ
1. WPROWADZENIE l
2. ANALIZA PÓL ELEKTROMAGNETYCZNYCH PRZEKŁADNIKÓW
2.1. Podstawy matematyczne modelowania pól elektromagnetycznych
przekładników
2.2. Tworzenie modeli numerycznych badanych obiektów
2.2.1. Tworzenie modeli dwuwymiarowych
2.2.2. Tworzenie modeli trójwymiarowych
2.3. Obliczanie parametrów schematu zastępczego przekładnika
2.3.1. Obliczanie reaktancji rozproszenia uzwojeń przekładnika metodami polowymi.
Przekładnik napięciowy o przekładni 15:^3/0, l :VI kV
3. WYZNACZANIE BŁĘDÓW PRZEKŁADNIKA PRĄDOWEGO
W WARUNKACH STANU USTALONEGO NA PODSTAWIE ANALIZY
POLOWO-OBWODOWEJ
3.1. Wyznaczanie charakterystyk błędów prądowych i przesunięcia fazowego
przekładników prądowych w warunkach pracy znamionowej
3.1.1. Laboratoryjny pomiarowy przekładnik prądowy z rdzeniem
ramkowym o przekładni A/5A
3.1.2. Przekładnik prądowy z regulowaną szczeliną o przekładni 200A/5A
3.1.3. Zabezpieczeniowy toroidalny przelotowy przekładnik klasy TPZ
o przekładni 2400A/1A
3.1.4. Zabezpieczeniowy przelotowy przekładnik toroidalny klasy TPZ
o przekładni 200A/1A i rdzeniach z różną liczbą szczelin
3.2. Wyznaczanie błędów całkowitych przekładnika prądowego
w warunkach przeleżenia
3.3. Obliczanie wartości szczytowej napięcia przy otwartym obwodzie
wtórnym przekładnika prądowego
4. WYZNACZANIE BŁĘDÓW PRZEKŁADNIKA PRĄDOWEGO
W STANACH DYNAMICZNYCH
4.1. Wyznaczanie chwilowego prądu błędu przekładnika zabezpieczeniowego
TPZ przy zastosowaniu metody polowo-obwodowej
4.1.1. Zabezpieczeniowy przelotowy przekładnik toroidalny klasy TPZ
o przekładni 600A/1A
4.1.2. Zabezpieczeniowy przelotowy przekładnik toroidalny klasy TPZ
o przekładni 2400A/1A
4.2. Wpływ liczby i rozłożenia szczelin powietrznych w rdzeniu przekładnika
zabezpieczeniowego klasy TPZ na parametry stanu przejściowego
4.3. Określenie zastępczej charakterystyki magnesowania rdzeni ze szczelinami
powietrznymi przekładników zabezpieczeniowych klasy TPZ
4.4. Wpływ technologii wykonywania szczelin powietrznych w rdzeniach
przekładników zabezpieczeniowych klasy TPZ na parametry stanu
przejściowego
5. WYKORZYSTANIE OBLICZEŃ ROZKŁADU POLA ELEKTRYCZNEGO
DO OCENY POPRAWNOŚCI KONSTRUKCJI UKŁADÓW IZOLACYJNYCH
RZEKŁADNIKÓW
5.1. Wybór wersji projektowej układu izolacyjnego przekładników wysokiego
i średniego napięcia
5.11. Przekładnik napięciowy wysokiego napięcia z izolacją gazową SF6
5.1.2. Przekładnik napięciowy wysokiego napięcia z izolacją papierowo-olejową
5.1.3. Przekładnik napięciowy średniego napięcia z izolacją żywiczną
5.2. Projektowanie izolacji głównej przekładników z wewnętrznym
sterowaniem pojemnościowym
5.2.1. Sposób ułożenia ekranów sterujących polem elektrycznym w
papierowo-olejowej izolacji głównej przekładników
wysokiego napięcia
5.2.2. Stosowanie pierścieni na końcach ekranów w izolacji
ze sterowaniem pojemnościowym
5.2.3. Projektowanie układu izolacyjnego wysokonapięciowych przekładników
kombinowanych. Przekładnik kombinowany z izolacją papierowo-olejową z
wewnętrznym sterowaniem pojemnościowym
6. WEWNĘTRZNA KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA
6.1. Wpływ wzajemnego sprzężenia części prądowej i napięciowej na
właściwości metrologiczne przekładnika kombinowanego
6.1.1. Sprzężenie przez pole magnetyczne
6.1.2. Sprzężenie przez pole elektryczne
6.2. Wpływ wzajemnego usytuowania rdzeni w przekładniku wielordzeniowym
na parametry stanu przejściowego przekładnika zabezpieczeniowego
klasy TPZ
6.2.1. Usytuowanie wzajemne rdzeni ze szczelinami
6.2.2. Wpływ przekładników innego typu na pracę przekładnika TPZ
7. OCENA WPŁYWU PÓL ZEWNĘTRZNYCH NA PRACĘ PRZEKŁADNIKÓW
7.1. Wpływ przewodu powrotnego i elementów konstrukcyjnych na rozkład
pola rozproszenia przekładnika
7.1.1. Dwurdzeniowy toroidalny przelotowy przekładnik prądowy
o przekładni 50A/5A/5A
7.1.2. Wysokonapięciowy wielordzeniowy przekładnik prądowy z cewką
pierwotną typu U o przekładni 2kA/lA
7.2. Wpływ pól zewnętrznych na pracę przekładników transreaktorowych
(prąd-napięcie)
7.2.1. Przelotowy przekładnik transreaktorowy prąd-napięcie o przekładni 40mV/A
BIBLIOGRAFIA .
MYIR MYC-C7Z010 to moduł komputera jednopłytkowego opartego na układzie MYC-C7Z010. Układ ten składa się z dwurdzeniowego procesora opartego na rdzeniu Cortex-A9 (667 MHz) oraz układu FPGA Artix-7. Płytka posiada 1 GB pamięci DDR3 SDRAM, 4 GB pamięci eMMC oraz 32 MB pamięci QSPI Flash. Płytka jest wyposażona liczne peryferia, których wyjścia zostały wyprowadzone na dwóch złączach 140-pinowych.
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru
LPY550AL Dual-Axis (Pitch and Yaw or XZ) Gyro with ą500°/s and ą2000°/s Ranges
Brak towaru
Brak towaru
Brak towaru
Bateria litowa muRata CR1220 to ogniwo guzikowe o napięciu 3 V i pojemności 40 mAh, stosowane w urządzeniach elektronicznych o niskim poborze prądu, takich jak piloty czy zegarki. Jej wymiary wynoszą 12,5 mm średnicy i 2 mm wysokości.
Brak towaru
Solarbotics GM18 30:1 Mini Metal Gear Motor
Brak towaru
Brak towaru
Ultra high performance digital triaxial acceleration sensor, I2C and SPI interface mode, voltage 1.62V - 3.6V, LGA12, BOSCH, RoHS
Brak towaru
Brak towaru