- Obecnie brak na stanie

This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation is intended for a broad audience--the author's ability to motivate and pace discussions for beginners has been praised by reviewers. Each chapter contains numerous examples and exercises, as well as a useful summary of important results. An excellent introduction to the area, suitable either for a first course, or as a component in general machine learning and advanced AI courses. Also an important reference for AI researchers.
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Zestaw do budowy robota kroczącego sterowanego za pomocą aplikacji mobilnej i programowanego za pomocą Arduino IDE. Totem TKR-LSP
Brak towaru
Brak towaru
Brak towaru
Wyświetlacz alfanumeryczny OLED Longlife 2x20 znaków, kolor tekstu żółty na czarnym tle. Winstar WEH002002ALPP5N00008
Brak towaru
Zestaw AVT do samodzielnego montażu PAmp_LM4766, wzmacniacza mocy audio 2 x 20W 8om. AVT1833 B
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Brak towaru