• Obecnie brak na stanie
Machine Learning
search
  • Machine Learning
ID: 176842
Balas Natarajan
Wycofany
 

Wysyłka od 50 zł gratis

darmowa wysyłka paczkomatem na terenie Polski dla wszystkich zamówień powyżej 50 PLN

 

Wysyłka tego samego dnia

Jeśli Twoja wpłata zostanie zaksięgowana na naszym koncie do godz. 11:00

 

14 dni na zwrot

Każdy konsument może zwrócić zakupiony towar w ciągu 14 dni bez zbędnych pytań

This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation is intended for a broad audience--the author's ability to motivate and pace discussions for beginners has been praised by reviewers. Each chapter contains numerous examples and exercises, as well as a useful summary of important results. An excellent introduction to the area, suitable either for a first course, or as a component in general machine learning and advanced AI courses. Also an important reference for AI researchers.



Chapter 1 Introduction
Chapter 2 Learning Concept on Countable Domains
Chapter 3 Time Complexity of Concept Learning
Chapter 4 Learning Concepts on Uncoutable Domains
Chapter 5 Learning Functions
Chapter 6 Finite Automata
Chapter 7 Neural Networks
Chapter 8 Generalizing the Learning Model
Chapter 9 Conclusion
176842

Produkty z tej samej kategorii (16)