- Obecnie brak na stanie
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, provides an accessible approach to Bayesian Data Analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all scenarios addressed by non-Bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, correlation, multiple regression, and chi-square (contingency table analysis).
This book is intended for first year graduate students or advanced undergraduates. It provides a bridge between undergraduate training and modern Bayesian methods for data analysis, which is becoming the accepted research standard. Prerequisite is knowledge of algebra and basic calculus.
Accessible, including the basics of essential concepts of probability and random sampling
(UNIQUE) Examples with R programming language and BUGS software
Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, correlation, multiple regression, and chi-square (contingency table analysis).
Coverage of experiment planning
R and BUGS computer programming code on website
video's that correspond to various parts of the book
graded difficulty level of exercises- easier to hardest
This Book's Organization: Read me First!; The Basics: Parameters, Probability, Bayes' Rule and R; What is this stuff called probability?; Bayes' Rule; Part II All the Fundamental Concepts and Techniques in a Simple Scenario; Inferring a Binomial Proportion via Exact mathematical Analysis; Inferring a Binomial Proportion via Grid Approximation; Inferring a Binomial Proportion via Monte Carlo Methods; Inferences Regarding Two Binomial Proportions; Bernoulli Likelihood with Hierarchical Prior; Hierarchical modeling and model comparison; Null Hypothesis Significance Testing; Bayesian Approaches to Testing a Point ("Null") Hypothesis; Goals, Power, and Sample Size; Part III The Generalized Linear Model; Overview of the Generalized Linear Model; Metric Predicted Variable on a Single Group; Metric Predicted Variable with One Metric Predictor; Metric Predicted Variable with Multiple Metric Predictors; Metric Predicted Variable with One Nominal Predictor; Metric Predicted Variable with Multiple Nominal Predictors; Dichotomous Predicted Variable; Original Predicted Variable, Contingency Table Analysis; Part IV Tools in the Trunk; Reparameterization, a.k.a. Change of Variables; References; Index
Brak towaru
Brak towaru
Brak towaru
HK 3D Printer RepRap Smart Controller ( Ramps LCD Control ) (46899)
Brak towaru
Brak towaru
Brak towaru
HK Body Clip D (10Pcs/Bag) - 110BS, A2003, A2010, A2027, A2029, A3007 and A3015 (14144)
Brak towaru
Moduł pamięci Flash eMMC 5.1 dla komputerów Odroid C2 firmy Hardkernel. Pojemność 128GB, zainstalowany system operacyjny Linux. W zestawie znajduje się adapter microSD. Hardkernel
Brak towaru
UGears Hot Rod Furious Mouse to idealne połączenie pasji do motoryzacji z radością płynącą z samodzielnego montażu i kreatywności, prezentując niezapomniane doświadczenie zarówno dla modelarzy, jak i miłośników samochodów. UGears 70192
Brak towaru
Brak towaru
Brak towaru
Brak towaru
Układ 74HC74N posiada dwa przerzutniki D z asynchronicznymi wejściami S i R, seria TTLHC, technologia CMOS, zasilanie 2-6 V, obudowa DIP14.
Brak towaru
Brak towaru
Brak towaru
Brak towaru