• Obecnie brak na stanie
Pattern Recognition
search
  • Pattern Recognition
ID: 174193
Sergios Theodoridis, Konstantinos Koutroumbas
Wycofany
 

Wysyłka od 50 zł gratis

darmowa wysyłka paczkomatem na terenie Polski dla wszystkich zamówień powyżej 50 PLN

 

Wysyłka tego samego dnia

Jeśli Twoja wpłata zostanie zaksięgowana na naszym koncie do godz. 11:00

 

14 dni na zwrot

Każdy konsument może zwrócić zakupiony towar w ciągu 14 dni bez zbędnych pytań

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback.



  • Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques
  • Many more diagrams included--now in two color--to provide greater insight through visual presentation
  • Matlab code of the most common methods are given at the end of each chapter
  • An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913)
  • Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms
  • Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.


  • 1. Introduction
    2. Classifiers based on Bayes Decision
    3. Linear Classifiers
    4. Nonlinear Classifiers
    5. Feature Selection
    6. Feature Generation I: Data Transformation and Dimensionality Reduction
    7. Feature Generation II
    8. Template Matching
    9. Context Depedant Clarification
    10. System Evaultion
    11. Clustering: Basic Concepts
    12. Clustering Algorithms: Algorithms L Sequential
    13. Clustering Algorithms II: Hierarchical
    14. Clustering Algorithms III: Based on Function Optimization
    15. Clustering Algorithms IV: Clustering
    16. Cluster Validity
    174193

    Produkty z tej samej kategorii (16)