• Out-of-Stock
Materials Science of Thin Films
search
  • Materials Science of Thin Films
ID: 176844
Milton Ohring
Delivery date unknown
 

Free shipping

free shipping in Poland for all orders over 500 PLN

 

Same day shipping

If your payment will be credited to our account by 11:00

 

14 days for return

Each consumer can return the purchased goods within 14 days

Is This chapter This chapter This chapter This chapter This chapter This chapter This chapter This. Oh, has a list of references, including the Electronic Science and Thin Films . The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level.

Since 1992, when the book was first published, it has to be published in the field of thin films. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.

Foreword to First Edition
Preface
Acknowledgments
A Historical Perspective
Chapter 1 A Review of Materials Science
1.1. Introduction
1.2. Structure
1.3. Defects in Solids
1.4. Bonds and Bands in Materials
1.5. Thermodynamics of Materials
1.6. Kinetics
1.7. Nucleation
1.8. An Introduction to Mechanical Behavior
1.9. Conclusion
exercises
References
Chapter 2 Vacuum Science and Technology
2.1. Introduction
2.2. Kinetic Theory of Gases
2.3. Gas Transport and Pumping
2.4. Vacuum Pumps
2.5. Vacuum Systems
2.6. Conclusion
exercises
References
Chapter 3 Thin-Film Evaporation Processes
3.1. Introduction
3.2. The Physics and Chemistry of Evaporation
3.3. Film Thickness Uniformity and Purity
3.4. Evaporation Hardware
3.5. Evaporation Processes and Applications
3.6. Conclusion
exercises
References
Chapter 4 Discharges, Plasmas, and Ion-Surface Interactions
4.1. Introduction
4.2. Plasmas, Discharges, and Arcs
4.3. Fundamentals of Plasma Physics
4.4. Reactions in Plasmas
4.5. Physics of Sputtering
4.6. Ion Bombardment Modification of Growing Films
4.7. Conclusion
exercises
References
Chapter 5 Plasma and Ion Beam Processing of Thin Films
5.1. Introduction
5.2. DC, AC, and Reactive Sputtering Processes
5.3. Magnetron Sputtering
5.4. Plasma Etching
5.5. Hybrid and Modified PVD Processes
5.6. Conclusion
exercises
References
Chapter 6 Chemical Vapor Deposition
6.1. Introduction
6.2. Reaction Types
6.3. Thermodynamics of CVD
6.4. Gas Transport
6.5. Film Growth Kinetics
6.6. Thermal CVD Processes
6.7. Plasma-Enhanced CVD Processes
6.8. Some CVD Materials Issues
6.9. Safety
6.10. Conclusion
exercises
References
Chapter 7 Substrate Surfaces and Thin-Film Nucleation
7.1. Introduction
7.2. An Atomic View of Substrate Surfaces
7.3. Thermodynamic Aspects of Nucleation
7.4. Kinetic Processes in Nucleation and Growth
7.5. Experimental Studies of Nucleation and Growth
7.6. Conclusion
exercises
References
Chapter 8 Epitaxy
8.1. Introduction
8.2. Manifestations of Epitaxy
8.3. Lattice Misfit and Defects in Epitaxial Films
8.4. Epitaxy of Compound Semiconductors
8.5. High-Temperature Methods for Depositing Epitaxial Semiconductor Films
8.6. Low-Temperature Methods for Depositing Epitaxial Semiconductor Films
8.7. Mechanisms and Characterization of Epitaxial Film Growth
8.8. Conclusion
exercises
References
Chapter 9 Film Structure
9.1. Introduction
9.2. Structural Morphology of Deposited Films and Coatings
9.3. Computational Simulations of Film Structure
9.4. Grain Growth, Texture, and Microstructure Control in Thin Films
9.5. Constrained Film Structures
9.6. Amorphous Thin Films
9.7. Conclusion
exercises
References
Chapter 10 Characterization of Thin Films and Surfaces
10.1. Introduction
10.2. Film Thickness
10.3. Structural Characterization of Films and Surfaces
10.4. Chemical Characterization of Surfaces and Films
10.5. Conclusion
exercises
References
Chapter 11 Interdiffusion, Reactions, and Transformations in Thin Films
11.1. Introduction
11.2. Fundamentals of Diffusion
11.3. Interdiffusion in Thin Metal Films
11.4. Compound Formation and Phase Transformations in Thin Films
11.5. Metal-Semiconductor Reactions
11.6. Mass Transport in Thin Films under Large Driving Forces
11.7. Conclusion
exercises
References
Chapter 12 Mechanical Properties of Thin Films
12.1. Introduction
12.2. Mechanical Testing and Strength of Thin Films
12.3. Analysis of Internal Stress
12.4. Techniques for Measuring Internal Stress in Films
12.5. Internal Stresses in Thin Films and Their Causes
12.6. Mechanical Relaxation Effects in Stressed Films
12.7. adhesion
12.8. Conclusion
exercises
References
index
176844

Other products in the same category (16)