Pololu 2564 - Pololu 5V Step-Up Voltage Regulator U1V10F5
search
  • Pololu 2564 - Pololu 5V Step-Up Voltage Regulator U1V10F5
  • Pololu 2564 - Pololu 5V Step-Up Voltage Regulator U1V10F5
  • Pololu 2564 - Pololu 5V Step-Up Voltage Regulator U1V10F5
  • Pololu 2564 - Pololu 5V Step-Up Voltage Regulator U1V10F5
  • Pololu 2564 - Pololu 5V Step-Up Voltage Regulator U1V10F5
  • Pololu 2564 - Pololu 5V Step-Up Voltage Regulator U1V10F5
ID: 208825
5906623477050
zł27.63
Tax included

zł22.46 tax excl.

Pololu 5V Step-Up Voltage Regulator U1V10F5

24h
Available
Available quantity: 3
Pololu 1,2A converters U1V10, voltage:
0,5-5,5 / 3,3 V
0,5-5,5 / 5 V
Kamami is the official distributor of electronic modules and Pololu robotic parts. All products of this brand in our offer are original and come directly from the manufacturer.
 

Free shipping

free shipping in Poland for all orders over 500 PLN

 

Same day shipping

If your payment will be credited to our account by 11:00

 

14 days for return

Each consumer can return the purchased goods within 14 days

Pololu 5V Step-Up Voltage Regulator U1V10F5

This tiny (0.35"×0.45") U1V10F5 switching step-up (or boost) voltage regulator efficiently generates 5 V from input voltages as low as 0.5 V. Unlike most boost regulators, the U1V10F5 automatically switches to a linear down-regulation mode when the input voltage exceeds the output. The pins have a 0.1" spacing, making this board compatible with standard solderless breadboards and perfboards.

Overview

This 5 V boost (step-up) voltage regulator generates higher output voltages from input voltages as low as 0.5 V, and it also automatically switches to a linear down-regulation mode when the input voltage exceeds the output. This makes it great for powering 5 V electronics projects from 1 to 3 NiMH, NiCd, or alkaline cells or from a single lithium-ion cell.

When boosting, this module acts as a switching regulator (also called switched-mode power supplies (SMPS) or DC-to-DC converters) and has a typical efficiency between 70% to 90%. The available output current is a function of the input voltage, output voltage, and efficiency (see Typical Efficiency and Output Current section below), but the input current can typically be as high as 1.2 A. This regulator is also available with a fixed 3.3 V output, and very similar 3.3V, 5V, and adjustable-output versions are available with a true shutdown option that turns off power to the load.

The regulator’s thermal shutdown engages at around 140°C and helps prevent damage from overheating, but it does not have short-circuit or reverse-voltage protection.

Features

  • Input voltage: 0.5 V to 5.5 V
  • Fixed 5 V output with 4% accuracy
  • Automatic linear down-regulation when the input voltage is greater than the output voltage
  • 1.2 A switch allows for input currents up to 1.2 A
  • Good efficiency at light load: <1 mA typical no-load quiescent current, though it can exceed 1 mA for very low input voltages
  • Integrated over-temperature shutoff
  • Small size: 0.35" × 0.45"; × 0.1" (9 × 11.5 × 2.5 mm)

Using the Regulator

Connections

The boost regulator has three connections: input voltage (VIN), ground (GND), and output voltage (VOUT).

The input voltage, VIN, must be at least 0.5 V for the regulator to turn on. However, once the regulator is on, the input voltage can drop as low as 0.3 V and the 5 V output voltage will be maintained on VOUT. Unlike standard boost regulators, this regulator has an additional linear down-regulation mode that allows it to convert input voltages as high as 5.5 V down to 5 V for small to moderate sized loads. When the input voltage exceeds 5 V, the regulator automatically switches to this down-regulation mode. The input voltage should not exceed 5.5 V. Please be wary of destructive LC spikes that might cause the input voltage to surpass 5.5 V (see below for more information).

The three connections are labeled on the back side of the PCB, and they are arranged with a 0.1" spacing along the edge of the board for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1" grid. You can solder wires directly to the board or solder in either the 3×1 straight male header strip or the 3×1 right-angle male header strip that is included.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator typically has an efficiency of 70 to 90%.

The maximum achievable output current is approximately proportional to the ratio of the input voltage to the output voltage. If the input current exceeds the switch current limit (typically somewhere between 1.2 and 1.5 A), the output voltage will begin to drop. Additionally, the maximum output current can depend on other factors, including the ambient temperature, air flow, and heat sinking.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause damaging voltage spikes that are much higher than the input voltage. In our tests with typical power leads (~30" test clips), input voltages above 4.5 V caused voltage spikes that could potentially damage the regulator. You can suppress such spikes by soldering a 33 µF or larger electrolytic capacitor close to the regulator between VIN and GND.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

People often buy this product together with:

Pololu 3.3V Step-Up Voltage Regulator U1V10F3 Pololu 3.3V Step-Up Voltage Regulator U1V10F3
Pololu 12V Step-Up Voltage Regulator U3V12F12 Pololu 12V Step-Up Voltage Regulator U3V12F12
400-Point Breadboard 400-Point Breadboard
208825

Data sheet

Output voltage
5th
Output current
1,2 A
Converter type
Step-up
Supply voltage min
0,5 V
Supply voltages max
5,5 V

You might also like

Other products in the same category (16)