zł54.35 tax excl.
The S9V11MA switching step-up/step-down regulator efficiently produces a finely adjustable output between 2.5 V and 9 V whether it is higher or lower than the input voltage, which can range from 2 V to 16 V. Pololu 2869
The S9V11x family of efficient switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) use a buck-boost topology to convert both higher and lower input voltages to a regulated output voltage. They take input voltages from 2 V to 16 V and increase or decrease them as necessary, offering a typical efficiency of over 85% and a typical output current of up to 1.5 A. The flexibility in input voltage offered by this family of regulators is especially well-suited for battery-powered applications in which the battery voltage begins above the regulated voltage and drops below as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered.
The different members of this family offer different output voltage options, from fixed voltages with selectable alternatives to adjustable voltages that can be set anywhere between 2.5 V and 9 V using a precision 12-turn potentiometer. Some versions also have an adjustable low-voltage cutoff that can be set anywhere in the 2 V to 16 V output voltage range and used to prevent your battery from over-discharging. This is particularly useful for battery chemistries that can be damaged when over-discharged, including Li-ion and LiPo.
Details for item #2869These regulators have short-circuit protection, and thermal shutdown prevents damage from overheating; they do not have reverse-voltage protection. Note that the startup current is limited to approximately 700 mA until the output voltage reaches the nominal voltage; after startup, the available current is a function of the input voltage (see the Typical efficiency and output current section below).
During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.
The step-up/step-down regulator has five main connections all located along the same edge of the board: the output voltage (OUT), ground (GND), the input voltage (IN), an enable input (EN), and a power good indicator (PG). The board also contains a through-hole labeled SEL that is not used on this version of the regulator.
The output voltage, VOUT, is determined by the trimmer potentiometer position.
The input voltage, VIN, should be between 3 V and 16 V when the regulator is first powered. After it is running, it can continue operating down to 2 V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive, and you should be wary of destructive LC spikes (see below for more information).
The regulator, which is enabled by default, can be put into a low-power sleep state by reducing the voltage on the EN below 0.7 V, and it can be brought out of this state again by increasing the voltage on EN past 0.8 V. The quiescent current draw in this sleep mode is dominated by the current in the 100 kΩ pull-up resistor from ENABLE to VIN, which is approximately 7 µA per volt on VIN (e.g. approximately 20 µA with 3 V in). The tight tolerance of the enable input allows a precise low-VIN cutoff to be set, such as with the output of an external voltage divider powered by VIN, which is useful for battery powered applications where draining the battery below a particular voltage threshold could permanently damage it.
The “power good” indicator, PG, is an open-drain output that goes low when the regulator’s output falls below around 90% of the nominal voltage, including when the enable pin is held low. The power good indicator is held low until the output reaches 95% of the nominal voltage when it is powering up or coming out of low-power mode. Otherwise, the PG pin is high-impedance, so an external pull-up resistor is required to use this pin.
The through-holes are arranged with a 0.1″ spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1″ grid. You can solder wires directly to the board or solder in pieces of the included breakaway 6 ×1 straight male header strip or the 5×1 right-angle male header strip as desired.
The output voltage of the regulator is controlled with a 12-turn precision potentiometer. Turning the potentiometer clockwise increases the output voltage, and it can be measured using a multimeter.
Please note that the output voltage can be set below 2.5 V at the low end of the potentiometer’s range and above 9 V at the high end. While this is not likely to damage the regulator, it might not work reliably or its output could become unstable when the output voltage is not within the recommended 2.5 V to 9 V range.
The output voltage can be up to 3% higher than normal when there is little or no load on the regulator. The output voltage can also drop depending on the current draw, especially when the regulator is boosting a lower voltage to a higher one (stepping up), although it should remain within 5% of the set voltage.
The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this family of switching regulators typically has an efficiency of 85% to 95%. A power-saving feature maintains these high efficiencies even when the regulator current is very low.
The maximum achievable output current of these regulators varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that these regulators can deliver continuously at room temperature in still air and without additional heat sinking. Depending on the input and output voltage, these regulators can temporarily deliver over 2 A, though they will typically quickly overheat under such conditions and go into thermal shutdown.
Note that the startup current for input voltages above the regulated output voltage is limited to approximately 700 mA, and currents in excess of this are only available after the output has finished stabilizing. For input voltages below the output voltage, the available start up current decreases linearly with the input voltage to approximately 0.3 A with an input of 3 V. Large capacitive loads will generally not pose a problem because they will gradually charge up even with the current limit active, so while they may increase the time it takes an S9V11x family regulator to start up, the regulator should still eventually stabilize. A purely resistive load, however, could prevent the regulator from ever reaching the desired output voltage. For example, if the output of the regulator is 5V and you put a 5 Ω resistor between VOUT and GND and then apply power to the regulator, the output voltage will never rise past 3.5 V, the voltage at which the current draw reaches the 700 mA limit. As such, this family of regulators is intended for applications like robotics, where any large loads are controllable and can be applied only after the regulator has finished starting up.
When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed a regulator’s maximum voltage, the regulator can be destroyed. If you are connecting more than about 9 V, using power leads more than a few inches long, or using a power supply with high inductance, we recommend soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 20 V.
| Size: | 0.5″ × 0.6″ × 0.25″1 |
|---|---|
| Weight: | 0.8 g1 |
| Minimum operating voltage: | 2 V2 |
|---|---|
| Maximum operating voltage: | 16 V |
| Maximum output current: | 1.5 A3 |
| Minimum output voltage: | 2.5 V4 |
| Maximum output voltage: | 9 V4 |
| Reverse voltage protection?: | N |
| Maximum quiescent current: | 1 mA5 |
Data sheet
Manufacturer BTC Korporacja sp. z o. o. Lwowska 5 05-120 Legionowo Poland sprzedaz@kamami.pl 22 767 36 20
Responsible person BTC Korporacja sp. z o. o. Lwowska 5 05-120 Legionowo Poland sprzedaz@kamami.pl 22 767 36 20
The S9V11MACMA switching step-up/step-down regulator efficiently produces a finely adjustable output between 2.5 V and 9 V whether it is higher or lower than the input voltage, which can range from 3 V to 16 V. The regulator also has a precision-adjustable low-voltage cutoff with hysteresis that can be used to prevent battery over-discharge.
The S9V11F5S6CMA switching step-up/step-down regulator efficiently produces a fixed 5 V (default) or 6 V (selectable) output whether it is higher or lower than the input voltage, which can range from 2 V to 16 V. (Note: minimum start-up voltage is 3 V, but it operates to 2 V after that.)
The S9V11F3S5 switching step-up/step-down regulator efficiently produces a fixed 3.3 V (default) or 5 V (selectable) output whether it is higher or lower than the input voltage, which can range from 2 V to 16 V. (Note: minimum start-up voltage is 3 V, but it operates to 2 V after that.)
The S9V11F3S5CMA switching step-up/step-down regulator efficiently produces a fixed 3.3 V (default) or 5 V (selectable) output whether it is higher or lower than the input voltage, which can range from 2 V to 16 V. (Note: minimum start-up voltage is 3 V, but it operates to 2 V after that.)
No product available!
The S9V11F3S5C3 switching step-up/step-down regulator efficiently produces a fixed 3.3 V (default) or 5 V (selectable) output whether it is higher or lower than the input voltage, which can range from 3 V to 16 V. The regulator also has fixed 3.3 V low-voltage cutoff with hysteresis that can be used to prevent battery over-discharge.
The Akyga® AK-SC-E17 plug is a high-quality component for EV charging systems compliant with the Type 2 standard. Thanks to its durable construction and support for 3-phase charging up to 32 A, it provides a reliable solution for repairing charging cables or building custom EVSE stations. It is ideal for use in both residential and professional electric vehicle charging installations.
No product available!
Akyga® AK-PD-04 charger is a practical and durable solution for users of Philips Satinelle epilators. It ensures safe, stable, and convenient charging, combining reliable construction with modern protection standards. Thanks to its compact dimensions, it is perfect for everyday use as well as for travel.
The 4 S balance cable extension enables convenient extension of battery balance leads without loss of charging precision. Durable construction makes it suitable for RC setups and workshop chargers.
No product available!
3S Li-Po battery charge indicator module with a nominal voltage of 12.6 V
The Akyga AKY1235 lithium battery is a CR123 cell with a voltage of 3V and a capacity of 1500 mAh, manufactured using Li-MnO₂ technology. It is resistant to high temperatures, allowing it to operate in environments up to 85°C.
Adapter cable enables secure connection between a charger with an XT60 input and power sources using clip leads. Ideal for modelers and electronics users needing flexible wiring options and compatibility between XT60‑equipped chargers and clip-style terminals.
No product available!
GP1604A/6LF22/6LR61/MN1604 alkaline battery with a voltage of 9V. GP 1604A
Three-phase electric car charger with Type2 plug. It uses a 5-pin CEE connector and has an adjustable charging current. Akyga AK-EC-12
No product available!
Solar panel with an output voltage of 18 V and a power of 10 W. It consists of 36 cells (4x9) and a sturdy frame. It ensures high efficiency and stability of work. Waveshare Solar Panel (18V 10W)
Step-Down DC-DC converter module based on the D36V6F3 system. Input voltage 4 ... 50V, output voltage 3.3V (max. 600mA). Polol 3791
The ToolkitRC adapter enables convenient connection of XT30-equipped batteries to XT60-output chargers and devices. A practical solution for flexible power configurations in electronics and RC applications.
No product available!
Kit containing the Panasonic Eneloop BQ-CC55 charger and 4 Panasonic Eneloop R6/AA rechargeable batteries with 2000 mAh capacity. Panasonic K-KJ55MCC40E
INR18650 lithium-ion battery with a nominal voltage of 3.7V and a capacity of 3200mAh, equipped with a PCM protection circuit, designed for powering electronic devices. Akyga AKY2461
No product available!
The Lanberg PS0-05E-0100-IEC-BK extension strip with 5 E-type sockets and an IEC C14 connector is an ideal solution for ensuring reliable emergency power supply. Thanks to the possibility of connecting directly to the UPS, the strip provides effective protection for many electronic devices in the event of a power outage. Lanberg PS0-05E-0100-IEC-BK
No product available!
Step-Down XL4005 converter module with adjustable output voltage in the range from 0.8 to 30 V with a wide input voltage range from 4.5 to 30 V and a maximum output current of 5 A
The Akyga® AK-CH-23 USB-C charger is a compact and energy-efficient 65 W device that uses advanced GaN technology for increased efficiency and reduced size. It supports fast charging standards Power Delivery 3.0 and Quick Charge 3.0, making it perfect for powering smartphones, tablets, and laptops—both at home and on the go.
The S9V11MA switching step-up/step-down regulator efficiently produces a finely adjustable output between 2.5 V and 9 V whether it is higher or lower than the input voltage, which can range from 2 V to 16 V. Pololu 2869