• Out-of-Stock
Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
search
  • Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
  • Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
  • Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
  • Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
  • Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
  • Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
  • Silnik Pololu 12V 131:1 z enkoderem 64 CPR 37Dx73L mm
ID: 561017

This gearmotor is a powerful 12V brushed DC motor with a 131.25:1 metal gearbox and an integrated quadrature encoder that provides a resolution of 64 counts per revolution of the motor shaft. These units have a 16 mm-long, 6 mm-diameter D-shaped output shaft.

Retired
Kamami is the official distributor of electronic modules and Pololu robotic parts. All products of this brand in our offer are original and come directly from the manufacturer.
 

Free shipping

free shipping in Poland for all orders over 500 PLN

 

Same day shipping

If your payment will be credited to our account by 11:00

 

14 days for return

Each consumer can return the purchased goods within 14 days

Overview

This powerful brushed DC gearmotor is available in six different gear ratios and features an integrated quadrature encoder with 64 counts per revolution (CPR) of the motor shaft. The motor and encoder portion is available by itself (no gearbox), and versions without the encoder are also available.

Gear RatioNo-Load
Speed
@ 12 V
Stall Torque
@ 12 V
Stall Current
@ 12 V
With EncoderWithout Encoder
1:1 11,000 RPM 5 oz-in 5 A motor without gearbox
19:1 500 RPM 84 oz-in 5 A 37Dx68L mm 37Dx52L mm
30:1 350 RPM 110 oz-in 5 A 37Dx68L mm 37Dx52L mm
50:1 200 RPM 170 oz-in 5 A 37Dx70L mm 37Dx54L mm
70:1 150 RPM 200 oz-in 5 A 37Dx70L mm 37Dx54L mm
100:1 100 RPM 220 oz-in 5 A 37Dx73L mm 37Dx57L mm
131:1 80 RPM 250 oz-in 5 A 37Dx73L mm 37Dx57L mm

Note: Stalling or overloading gearmotors can greatly decrease their lifetimes and even result in immediate damage. Stalls can also result in rapid (potentially on the order of seconds) thermal damage to the motor windings and brushes; a general recommendation for brushed DC motor operation is 25% or less of the stall current.

These motors are intended for use at 12 V, though in general, these kinds of motors can run at voltages above and below the nominal voltage (they can begin rotating at voltages as low as 1 V). Lower voltages might not be practical, and higher voltages could start negatively affecting the life of the motor.

These gearmotors are functionally identical to the previous versions we carried without end caps (they use the same motor, encoder, and gearboxes). The black plastic end cap is easily removable if you need to access the encoder or want to slightly reduce the overall gearmotor size, but there is a little bit of base plastic that will remain.

Warning: Do not screw too far into the mounting holes as the screws can hit the gears. We recommend screwing no further than 3mm (1/8″) into the screw hole.

Using the Encoder

A two-channel Hall effect encoder is used to sense the rotation of a magnetic disk on a rear protrusion of the motor shaft. The quadrature encoder provides a resolution of 64 counts per revolution of the motor shaft when counting both edges of both channels. To compute the counts per revolution of the gearbox output, multiply the gear ratio by 64. The motor/encoder has six color-coded, 8″ (20 cm) leads terminated by a 1×6 female header with a 0.1″ pitch, as shown in the main product picture. This header works with standard 0.1″ male headers and our male jumper and precrimped wires. If this header is not convenient for your application, you can pull the crimped wires out of the header or cut the header off. The following table describes the wire functions:

ColorFunction
Red motor power (connects to one motor terminal)
Black motor power (connects to the other motor terminal)
Green encoder GND
Blue encoder Vcc (3.5 – 20 V)
Yellow encoder A output
White encoder B output

The Hall sensor requires an input voltage, Vcc, between 3.5 and 20 V and draws a maximum of 10 mA. The A and B outputs are square waves from 0 V to Vcc approximately 90° out of phase. The frequency of the transitions tells you the speed of the motor, and the order of the transitions tells you the direction.

By counting both the rising and falling edges of both the A and B outputs, it is possible to get 64 counts per revolution of the motor shaft. Using just a single edge of one channel results in 16 counts per revolution of the motor shaft, so the frequency of the A output in the above oscilloscope capture is 16 times the motor rotation frequency.


General specifications

Gear ratio: 131:1
No-load speed @ 12V: 80 rpm
No-load current @ 12V: 300 mA
Stall current @ 12V: 5000 mA
Stall torque @ 12V: 250 oz·in
No-load speed @ 6V: 40 rpm2
No-load current @ 6V: 250 mA2
Stall current @ 6V: 2500 mA2
Stall torque @ 6V: 125 oz·in2
Lead length: 8 in3

Dimensions

Size: 37D x 72.5L mm1
Weight: 235 g
Shaft diameter: 6 mm

Notes

1 Length measurement does not include gearbox shaft or the raised area immediately around it.
2 This motor will run at 6 V but is intended for operation at 12 V.
3 May vary by a few inches.
561017

Data sheet

Engine size (series)
Other
DC motor power
Other
Gear material
Metal
Gear ratio
131:1
Rotation speed
80RPM
Shaft shape
D

You might also like

Other products in the same category (16)