- Out-of-Stock
Products
Categories
- Main categories
-
- 3D PRINTING
- ARDUINO
- AUTOMATION
- BOOKS
- CYBERSECURITY
- EDUCATION
- ELECTRONICS
- Cables
- Cameras and accessories
- Communication
- Conductive materials
- Connectors
- ARK connectors (Terminal Block)
- Coaxial connectors (RF)
- Connectors
- Crocodile clip
- D-Sub drawer connectors
- DC power connectors
- FFC/FPC ZIF connectors
- Goldpin connectors
- IDC connectors
- JACK connectors
- JST connectors
- Jumpers
- Memory cards slots
- Other connectors
- Pogo pin
- RJ45 connectors
- Slip ring connector
- Supports
- Szybkozłącza
- USB connectors
- USB PD Adapters for Laptops
- Cooling
- Displays
- Electronic modules
- A/D and D/A converters
- Audio
- Barcode readers
- CAN converters
- Converters USB - UART / RS232
- Data logger
- DDS/PLL generators
- Digital potentiometers
- Encoders
- Expanders of the I/O
- Fingerprint readers
- HMI modules
- Image and video
- JTAG accessories
- Keyboards, buttons
- LED drivers
- Memory card readers
- Memory modules
- Modules with power outputs
- Motor controllers
- Power modules
- RS485 converters
- RTC modules
- Servo Controllers
- TSOP infrared receivers
- USB Converters - I2C / 1-Wire / SPI
- Voltage converters
- Gadgets
- GPS
- Intelligent clothes
- LED - diodes, displays, stripes
- Luminous wires and accessories
- Machine vission (MV)
- Memory cards and other data storages
- Passive elements
- PC accessories
- Printers
- Prototype boards
- Relays
- Semiconductors
- A/C converters (ADC)
- Analog systems
- Audio systems
- Bridge rectifiers
- Button
- D/A Converters (DAC)
- DDS synthesizers
- Digital circuits
- Diodes
- Drivers of motors
- DSP microprocessors
- Energy counters
- Energy harvesting
- ESD security
- IGBT drivers and bridges
- Interface systems
- LED drivers
- Logic converters
- Memory
- Microcontrollers
- Optotriacs and optocouplers
- Other
- PLL generators
- Power systems
- Programmable systems
- Resetting systems
- RF systems
- RTC systems
- Sensors
- SoC systems
- Timery
- Touch sensors
- Transistors
- Sensors
- Accelerometers
- Air humidity sensors
- Air quality sensors
- Current sensors
- Distance sensors
- Flow sensors
- Gas sensors
- Gyroscopes
- Hall sensors
- Humidity sensors
- Infrared sensors
- Light and color sensors
- Liquid level sensors
- Magnetic sensors (compasses)
- Medical sensors
- Motion sensors
- PH sensors
- Position sensors
- Pressure sensors
- Pressure sensors
- Reflection sensors
- Sensors 6DOF/9DOF/10DOF
- Sensors of liquid quality
- Temperature sensors
- Vibration sensors
- Sound transducers
- Switches and buttons
- Cables
- FPGA DEVELOPMENT KITS
- Measuring devices
- MECHANICS
- MINICOMPUTERS (SBC)
- POWER
- RASPBERRY PI
- Accessories for Raspberry Pi
- Audio video cables for Raspberry Pi
- Case Raspberry Pi
- Cooling for Raspberry Pi
- Displays for Raspberry Pi
- Extension modules for Raspberry Pi
- Memory cards for Raspberry Pi
- Power for Raspberry Pi
- Raspberry Pi 3 model A+
- Raspberry Pi 3 model B
- Raspberry Pi 3 model B+
- Raspberry Pi 4 model B
- Raspberry Pi 400
- Raspberry Pi 5
- Raspberry Pi 500
- Raspberry Pi cameras
- Raspberry Pi Compute Module
- Raspberry Pi model A/ B+/2
- Raspberry Pi Pico
- Raspberry Pi prototyping
- Raspberry Pi Zero
- Raspberry Pi Zero 2 W
- RETIRED PRODUCTS
- SALE
- STARTER KITS, PROGRAMMERS, MODULES
- Atmel SAM
- Atmel Xplain
- AVR
- Coral
- DFRobot FireBeetle
- ESP32
- ESP8266
- Feather / Thing Plus
- Freedom (Kinetis)
- M5Stack
- Micro:bit
- Nordic nRF
- Other development kits
- Particle Photon
- Peripheral modules
- PIC
- Raspberry Pi RP2040
- RFID
- RISC-V
- Seeed Studio LinkIt
- Segger programmers
- SOFTWARE
- Sparkfun MicroMod
- STM32
- STM32 Discovery
- STM32 MP1
- STM32 Nucleo boards
- STM8
- Teensy
- Universal programmers
- WRTNode
- XIAO/Qt PY
- Atmel SAM
- WORKSHOP
- Adhesives and gluers
- Chemistry
- CNC milling machines
- Crimping tools
- Dispensing needles
- Heat-shrink tubing
- Insulation strippers
- Knives and scissors
- Laboratory power supplies
- Mikroskopy
- Mini drills and grindrers
- Organizers
- Power strips
- Power tools
- Safety glasses
- Soldering
- Antistatic mats and accessories (ESD)
- BGA balls
- BGA rework stations
- Brushes and ESD brushes
- Desoldering Wick
- Handles, magnifiers
- Heat guns
- Heaters and soldering irons
- Laminates
- Portable soldering irons
- Silicone Soldering Mats
- SMD Accessories
- Soldering accessories
- Soldering chemistry
- Soldering irons
- Soldering pastes
- Soldering pots
- Soldering stations
- Soldering tips
- Sponges and cleaners
- Stand for soldering irons
- Tin
- Tin extractors
- Ultrasonic cleaners
- Tapes (aluminum, kapton, copper, insulating)
- Tools
- Tweezers
- Vices
- 3D PRINTING
New products
New products
V4 features the same sensors as v3 (L3GD20H, LSM303D) and adds an LPS25H digital barometer. An I²C interface accesses 10 independent measurements that can be used to calculate the sensor’s altitude and absolute orientation.
Free shipping
free shipping in Poland for all orders over 500 PLN
Same day shipping
If your payment will be credited to our account by 11:00
14 days for return
Each consumer can return the purchased goods within 14 days
DESCRIPTION
Overview
The Pololu AltIMU-10 v4 is a compact (1.0″ × 0.5″) board that combines ST’s LPS25H digital barometer, L3GD20H 3-axis gyroscope, and LSM303D 3-axis accelerometer and 3-axis magnetometer to form an inertial measurement unit (IMU) and altimeter; we therefore recommend careful reading of the LPS25H datasheet (1MB pdf), L3GD20H datasheet (3MB pdf), and LSM303D datasheet (1MB pdf) before using this product. These sensors are great ICs, but their small packages make them difficult for the typical student or hobbyist to use. They also operate at voltages below 3.6 V, which can make interfacing difficult for microcontrollers operating at 5 V. The AltIMU-10 v4 addresses these issues by incorporating additional electronics, including a voltage regulator and a level-shifting circuit, while keeping the overall size as compact as possible. The board ships fully populated with its SMD components, including the L3GD20H, LSM303D, and LPS25H, as shown in the product picture.
The AltIMU-10 v4 features a newer pressure sensor than its predecessor, the AltIMU-10 v3, enabling pressure and altitude measurements with higher accuracy and lower noise, but the two boards are otherwise identical. Compared to the original AltIMU-10, the v4 version offers a number of improvements arising from the use of newer MEMS sensors, including a wider maximum magnetic sensing range and better gyroscopic accuracy and stability. This version also adds a pin for changing the sensor slave addresses, allowing two AltIMUs to be on the same I²C bus.
The AltIMU-10 v4 is pin-compatible with both the v3 version and the original AltIMU-10, but changes in I²C addresses and configuration registers might require some changes to software written for the older version (this should not be an issue if you are using our Arduino libraries). It is also pin-compatible with the MinIMU-9 v3 and offers the same functionality augmented by a digital barometer that can be used to obtain pressure and altitude measurements. It includes a second mounting hole and is only 0.2″ longer than the MinIMU-9 v3. Any code written for the MinIMU-9 v3 should also work with the AltIMU-10 v4.
Side-by-side comparison of the MinIMU-9 v3 with the AltIMU-10 v4.
The LPS25H, L3GD20H, and LSM303D have many configurable options, including selectable resolutions for the barometer and dynamically selectable sensitivities for the gyro, accelerometer, and magnetometer. Each sensor also has a choice of output data rates. The three ICs can be accessed through a shared I²C/TWI interface, allowing the sensors to be addressed individually via a single clock line and a single data line. Additionally, the SA0 pin is accessible, allowing users to change the slave addresses and have two AltIMUs connected on the same I²C bus (For additional information, see the I²C Communication section below).
The nine independent rotation, acceleration, and magnetic readings provide all the data needed to make an attitude and heading reference system (AHRS), and readings from the absolute pressure sensor can be easily converted to altitudes, giving you a total of ten independent measurements (sometimes called 10DOF). With an appropriate algorithm, a microcontroller or computer can use the data to calculate the orientation and height of the AltIMU board. The gyro can be used to very accurately track rotation on a short timescale, while the accelerometer and compass can help compensate for gyro drift over time by providing an absolute frame of reference. The respective axes of the two chips are aligned on the board to facilitate these sensor fusion calculations. (For an example of such a system using an Arduino, see the picture below and the Sample Code section at the bottom of this page.)
Visualization of AHRS orientation calculated from MinIMU-9 readings.
SPECIFICATIONS
- Dimensions: 1.0″ × 0.5″ × 0.1″ (25 mm × 13 mm × 3 mm)
- Weight without header pins: 0.8 g (0.03 oz)
- Operating voltage: 2.5 V to 5.5 V
- Supply current: 6 mA
- Output format (I²C):
- Gyro: one 16-bit reading per axis
- Accelerometer: one 16-bit reading per axis
- Magnetometer: one 16-bit reading per axis
- Barometer: 24-bit pressure reading (4096 LSb/mbar)
- Sensitivity range:
- Gyro: ±245, ±500, or ±2000°/s
- Accelerometer: ±2, ±4, ±6, ±8, or ±16 g
- Magnetometer: ±2, ±4, ±8, or ±12 gauss
- Barometer: 260 mbar to 1260 mbar (26 kPa to 126 kPa)
Included Components
A 1×6 strip of 0.1″ header pins and a 1×5 strip of 0.1″ right-angle header pins are included, as shown in the picture below. You can solder the header strip of your choice to the board for use with custom cables or solderless breadboards or solder wires directly to the board itself for more compact installations. The board features two mounting holes that work with #2 or M2 screws (not included).
Using the AltIMU-10 v4
Connections
A minimum of four connections is necessary to use the AltIMU-10 v4: VIN, GND, SCL, and SDA. VIN should be connected to a 2.5 V to 5.5 V source, GND to 0 volts, and SCL and SDA should be connected to an I²C bus operating at the same logic level as VIN. (Alternatively, if you are using the board with a 3.3 V system, you can leave VIN disconnected and bypass the built-in regulator by connecting 3.3 V directly to VDD.)
Pololu AltIMU-10 v4 gyro, accelerometer, compass, and altimeter pinout.
Two Pololu AltIMU-10 v4 modules in a breadboard.
Pinout
PIN | Description |
---|---|
SCL | Level-shifted I²C clock line: HIGH is VIN, LOW is 0 V |
SDA | Level-shifted I²C data line: HIGH is VIN, LOW is 0 V |
GND | The ground (0 V) connection for your power supply. Your I²C control source must also share a common ground with this board. |
VIN | This is the main 2.5 V to 5.5 V power supply connection. The SCL and SDA level shifters pull the I²C bus high bits up to this level. |
VDD | 3.3 V regulator output or low-voltage logic power supply, depending on VIN. When VIN is supplied and greater than 3.3 V, VDD is a regulated 3.3 V output that can supply up to approximately 150 mA to external components. Alternatively, when interfacing with a 2.5 V to 3.3 V system, VIN can be left disconnected and power can be supplied directly to VDD. Never supply voltage to VDD when VIN is connected, and never supply more than 3.6 V to VDD. |
SA0 | 3.3V-logic-level input to determine I²C slave addresses of the three ICs (see below). It is pulled high by default through 10 kΩ resistor. This pin is not level-shifted and is not 5V-tolerant. |
Schematic Diagram
The above schematic shows the additional components the carrier board incorporates to make the LPS25H, L3GD20H, and LSM303D easier to use, including the voltage regulator that allows the board to be powered from a single 2.5 V to 5.5 V supply and the level-shifter circuit that allows for I²C communication at the same logic voltage level as VIN. This schematic is also available as a downloadable pdf: AltIMU-10 v4 schematic (202k pdf).
I²C Communication
The LPS25H’s barometer, the L3GD20H’s gyro, and the LSM303D’s accelerometer and magnetometer can be queried and configured through the I²C bus. Each of the four sensors acts as a slave device on the same I²C bus (i.e. their clock and data lines are tied together to ease communication). Additionally, level shifters on the I²C clock (SCL) and data lines (SDA) enable I²C communication with microcontrollers operating at the same voltage as VIN (2.5 V to 5.5 V). A detailed explanation of the protocols used by each device can be found in the LPS25H datasheet (1MB pdf), the L3GD20H datasheet (3MB pdf), and the LSM303D datasheet (1MB pdf). More detailed information about I²C in general can be found in NXP’s I²C-bus specification (371k pdf).
The L3GD20H, LSM303D, and LPS25H each have separate slave addresses on the I²C bus. The board connects SA0 pins of the three ICs together and pulls them all to VDD through a 10 kΩ resistor. You can drive the SA0 pin low to change the slave address. This allows you to have two AltIMUs (or an AltIMU v4 and a MinIMU v3) connected on the same I²C bus. The following table shows the slave addresses of the sensors:
Sensor | Slave Address (default) | Slave Address (SA0 driven low) |
---|---|---|
L3GD20H (gyro) | 1101011b | 1101010b |
LSM303D (accelerometer and magnetometer) | 0011101b | 0011110b |
LPS25H (barometer) | 1011101b | 1011100b |
All three chips on the AltIMU-10 v4 are compliant with fast mode (400 kHz) I²C standards as well as with the normal mode.
Sample Code
We have written a basic LPS25H Arduino library, L3GD20 Arduino library, and LSM303 Arduino library that make it easy to interface the AltIMU-10 v4 with an Arduino or Arduino-compatible board like an A-Star. They also make it simple to configure the sensors and read the raw pressure, gyro, accelerometer, and magnetometer data.
For a demonstration of what you can do with this data, you can turn an Arduino connected to a AltIMU-10 v4 into an attitude and heading reference system, or AHRS, with this Arduino program. It uses the data from the AltIMU-10 v4 to calculate estimated roll, pitch, and yaw angles, and you can visualize the output of the AHRS with a 3D test program on your PC (as shown in a screenshot above). This software is based on the work of Jordi Munoz, William Premerlani, Jose Julio, and Doug Weibel.
Protocol Hints
The datasheets provide all the information you need to use the sensors on the AltIMU-10 v4, but picking out the important details can take some time. Here are some pointers for communicating with and configuring the LPS25H, L3GD20H, and LSM303D that we hope will get you up and running a little bit faster:
- The pressure sensor, gyro, accelerometer, and magnetometer are all off by default. You have to turn them on by setting the correct configuration registers.
- You can read or write multiple pressure sensor, gyro, or accelerometer registers in a single I²C command by asserting the most significant bit of the register address to enable address auto-increment.
- Compared with previous LSM303-series sensors, the register interface to the magnetometer in the LSM303D is much more consistent with the accelerometer interface, and its accelerometer and magnetometer share a common I²C address instead of acting as two separate slave devices on the same bus.
- The pressure sensor has a 24-bit pressure reading. The gyro, accelerometer, and magnetometer all output readings in a 16-bit reading (obtained by combining the values in two 8-bit registers for each axis).
Product Comparison
We carry several inertial measurement and orientation sensors. The table below compares their capabilities:
Product Name | Sensors | Estimation | Other | ||||||
---|---|---|---|---|---|---|---|---|---|
Gyros (3x) | Accels (3x) | Mag (3x) | Altitude | Roll | Pitch | Yaw | Quaternion | Enclosure | |
Pololu MinIMU-9 v3 | YES | YES | YES | ||||||
Pololu AltIMU-10 v4 | YES | YES | YES | YES | |||||
CH Robotics UM7-LT Orientation Sensor | YES | YES | YES | YES | YES | YES | YES | ||
CH Robotics UM7 Orientation Sensor | YES | YES | YES | YES | YES | YES | YES | YES |
SPECIFICATIONS
Dimensions
Size: | 1.0″ × 0.5″ × 0.1″1 |
---|---|
Weight: | 0.8 g1 |
General specifications
Interface: | I²C |
---|---|
Minimum operating voltage: | 2.5 V |
Maximum operating voltage: | 5.5 V |
Axes: | pitch (x), roll (y), and yaw (z) |
Measurement range: | ±245, ±500, or ±2000°/s (gyro) ±2, ±4, ±6, ±8, or ±16 g (accelerometer) ±2, ±4, ±8, or ±12 gauss (magnetometer) 26 kPa to 126 kPa (barometer)2 |
Supply current: | 6 mA |
Notes:
- 1 Without included optional headers.
- 2 User-configurable.
RESOURCES
File downloads
- AltIMU-10 v4 schematic diagram (202k pdf) Printable schematic diagram of the AltIMU-10 v4.
- LPS25H datasheet (1MB pdf) Datasheet for the ST LPS25H MEMS pressure sensor.
- LPS25H Pressure/Altitude Sensor Carrier with Voltage Regulator schematic diagram (162k pdf) Printable schematic diagram of the LPS25H Pressure/Altitude Sensor Carrier with Voltage Regulator.
- UM10204 I²C-bus specification and user manual (371k pdf) The official specification for the I²C-bus, which is maintained by NXP.
- L3GD20H datasheet (3MB pdf) Datasheet for the ST L3GD20H three-axis digital-output gyroscope.
- LSM303D datasheet (1MB pdf) Datasheet for the ST LSM303D 3D accelerometer and 3D magnetometer module.
Recommended links
- Quaternion-based AHRS using AltIMU-10 & Arduino This Arduino program by Camel Software can read data from our AltIMU-10, compute the orientation of the board, and output it over serial. It uses quaternions internally to represent the rotation, but can output Euler anglers, a rotation matrix, or a quaternion. The MinIMU-9 v2 is just an AltIMU-10 without a pressure sensor, so the code can be made to work with a MinIMU-9 v2 by commenting out a few lines.
- Orientation sensing with the Raspberry Pi and MinIMU-9 v2 This project explains how to connect our MinIMU-9 v2 (or AltIMU-10) sensor board to a Raspberry Pi and use it to sense orientation. It includes a video, wiring instructions, and code.
- Using the L3GD20 gyroscope in control systems This is a YouTube playlist by control systems lecturer Brian Douglas that uses the L3GD20 MEMS gyroscope. It describes the fundamentals of the gyro and how to use it for closed and open loop control projects with MATLAB/Simulink and Arduino.
- ascii_graph by drewtm This sketch outputs a text-based graph of LSM303 accelerometer and L3G gyro data, providing a quick way to check whether the sensors are working as expected.
- MinIMU-9 v2 connected to 3ds Max in real time A MinIMU-9 v2 is connected to an Arduino Uno to interact in real time with 3ds Max. This 3ds Max MinIMU-9 tutorial (5MB zip) includes source code, 3ds Max files, and step-by-step instructions. By Nippur, August 2012.
p. code: Pololu 2470
Responsible person BTC Korporacja sp. z o. o. Lwowska 5 05-120 Legionowo Poland sprzedaz@kamami.pl 22 767 36 20
Other products in the same category (16)
Probe for measuring direct and alternating current with a current of up to 30 A. Works in the band up to 50 MHz, it can be connected to the oscilloscope through the UPI connector. It does not require an external power supply. Micsig CP503
No product available!
No product available!
No product available!
Universal power supply module working on the basis of four 18650 batteries. It offers DC outputs with voltages of 9 V, 12 V, 24 V and adjustable in the range from 1 to 20 V, as well as two USB 5 V outputs. DFRobot FIT0674
No product available!
No product available!
No product available!
No product available!
No product available!
No product available!
HK Turnigy TrackStar Waterproof 1/10 Brushless Power System 4000KV/80A (25138)
No product available!
No product available!
No product available!
No product available!
No product available!
Raspberry PI computer case (transparent), designed for mounting a prototype board
No product available!
No product available!