- Out-of-Stock
Products
Categories
- Main categories
-
- 3D PRINTING
- ARDUINO
- AUTOMATION
- BOOKS
- CYBERSECURITY
- EDUCATION
- ELECTRONICS
- Cables
- Cameras and accessories
- Communication
- Conductive materials
- Connectors
- ARK connectors (Terminal Block)
- Coaxial connectors (RF)
- Connectors
- Crocodile clip
- D-Sub drawer connectors
- DC power connectors
- FFC/FPC ZIF connectors
- Goldpin connectors
- IDC connectors
- JACK connectors
- JST connectors
- Jumpers
- Memory cards slots
- Other connectors
- Pogo pin
- RJ45 sockets
- Slip ring connector
- Supports
- Szybkozłącza
- USB connectors
- USB PD Adapters for Laptops
- Cooling
- Displays
- Electronic modules
- A/D and D/A converters
- Audio
- Barcode readers
- CAN converters
- Converters USB - UART / RS232
- Data logger
- DDS/PLL generators
- Digital potentiometers
- Encoders
- Expanders of the I/O
- Fingerprint readers
- HMI modules
- Image and video
- JTAG accessories
- Keyboards, buttons
- LED drivers
- Memory card readers
- Memory modules
- Modules with power outputs
- Motor controllers
- Power modules
- RS485 converters
- RTC modules
- Servo Controllers
- TSOP infrared receivers
- USB Converters - I2C / 1-Wire / SPI
- Voltage converters
- Gadgets
- GPS
- Intelligent clothes
- LED - diodes, displays, stripes
- Luminous wires and accessories
- Machine vission (MV)
- Memory cards and other data storages
- Passive elements
- PC accessories
- Printers
- Prototype boards
- Relays
- Semiconductors
- A/C converters (ADC)
- Analog systems
- Audio systems
- Bridge rectifiers
- Button
- D/A Converters (DAC)
- DDS synthesizers
- Digital circuits
- Diodes
- Drivers of motors
- DSP microprocessors
- Energy counters
- Energy harvesting
- ESD security
- IGBT drivers and bridges
- Interface systems
- LED drivers
- Logic converters
- Memory
- Microcontrollers
- Optotriacs and optocouplers
- Other
- PLL generators
- Power systems
- Programmable systems
- Resetting systems
- RF systems
- RTC systems
- Sensors
- SoC systems
- Timery
- Touch sensors
- Transistors
- Sensors
- Accelerometers
- Air humidity sensors
- Air quality sensors
- Current sensors
- Distance sensors
- Flow sensors
- Gas sensors
- Gyroscopes
- Hall sensors
- Humidity sensors
- Infrared sensors
- Light and color sensors
- Liquid level sensors
- Magnetic sensors (compasses)
- Medical sensors
- Motion sensors
- PH sensors
- Position sensors
- Pressure sensors
- Pressure sensors
- Reflection sensors
- Sensors 6DOF/9DOF/10DOF
- Sensors of liquid quality
- Temperature sensors
- Vibration sensors
- Sound transducers
- Switches and buttons
- Cables
- FPGA DEVELOPMENT KITS
- Measuring devices
- MECHANICS
- MINICOMPUTERS (SBC)
- POWER
- RASPBERRY PI
- Accessories for Raspberry Pi
- Audio video cables for Raspberry Pi
- Case Raspberry Pi
- Cooling for Raspberry Pi
- Displays for Raspberry Pi
- Extension modules for Raspberry Pi
- Memory cards for Raspberry Pi
- Power for Raspberry Pi
- Raspberry Pi 3 model A+
- Raspberry Pi 3 model B
- Raspberry Pi 3 model B+
- Raspberry Pi 4 model B
- Raspberry Pi 400
- Raspberry Pi 5
- Raspberry Pi 500
- Raspberry Pi cameras
- Raspberry Pi Compute Module
- Raspberry Pi model A/ B+/2
- Raspberry Pi Pico
- Raspberry Pi prototyping
- Raspberry Pi Zero
- Raspberry Pi Zero 2 W
- RETIRED PRODUCTS
- SALE
- STARTER KITS, PROGRAMMERS, MODULES
- Atmel SAM
- Atmel Xplain
- AVR
- Coral
- DFRobot FireBeetle
- ESP32
- ESP8266
- Feather / Thing Plus
- Freedom (Kinetis)
- M5Stack
- Micro:bit
- Nordic nRF
- Other development kits
- Particle Photon
- Peripheral modules
- PIC
- Raspberry Pi RP2040
- RFID
- RISC-V
- Seeed Studio LinkIt
- Segger programmers
- SOFTWARE
- Sparkfun MicroMod
- STM32
- STM32 Discovery
- STM32 MP1
- STM32 Nucleo boards
- STM8
- Teensy
- Universal programmers
- WRTNode
- XIAO/Qt PY
- Atmel SAM
- WORKSHOP
- Adhesives and gluers
- Chemistry
- CNC milling machines
- Crimping tools
- Dispensing needles
- Heat-shrink tubing
- Insulation strippers
- Knives and scissors
- Laboratory power supplies
- Mikroskopy
- Mini drills and grindrers
- Organizers
- Power strips
- Power tools
- Safety glasses
- Soldering
- Antistatic mats and accessories (ESD)
- BGA balls
- BGA rework stations
- Brushes and ESD brushes
- Desoldering Wick
- Handles, magnifiers
- Heat guns
- Heaters and soldering irons
- Laminates
- Portable soldering irons
- Silicone Soldering Mats
- SMD Accessories
- Soldering accessories
- Soldering chemistry
- Soldering irons
- Soldering pastes
- Soldering pots
- Soldering stations
- Soldering tips
- Sponges and cleaners
- Stand for soldering irons
- Tin
- Tin extractors
- Ultrasonic cleaners
- Tapes (aluminum, kapton, copper, insulating)
- Tools
- Tweezers
- Vices
- 3D PRINTING
New products
New products
Pololu Step-Up/Step-Down Voltage Regulator S8V3A
Free shipping
free shipping in Poland for all orders over 500 PLN
Same day shipping
If your payment will be credited to our account by 11:00
14 days for return
Each consumer can return the purchased goods within 14 days
Pololu Step-Up/Step-Down Voltage Regulator S8V3A
This switching regulator uses the SEPIC topology to provide a regulated output voltage that can be higher than, the same as, or lower than the input voltage, making it great for applications with widely-varying power supplies and for battery-operated applications where the battery transitions from being above the output to below the output as it discharges. The tiny (0.4"×0.7") module can support input voltages from 1.5 V to 12 V, has an adjustable output from 2 V to 12 V, and can supply over 300 mA in typical applications.
Overview
The Pololu step-up/step-down voltage regulator S8V3A is a switching regulator (also called a switched-mode power supply (SMPS) or DC-to-DC converter) with a single-ended primary-inductor converter (SEPIC) topology. It takes an input voltage from 1.5 V to 12 V and increases or decreases the voltage to a user-adjustable output voltage between 2 V and 12 V. The input voltage can be higher than, lower than, or equal to the set output voltage, and the voltage is regulated to achieve the set output voltage.
This flexibility in input voltage is especially well-suited for battery-powered applications in which the battery voltage begins above the desired output voltage and drops below the target as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered. For instance, a 4-cell battery holder, which might have a 6 V output with fresh alkalines but a 4.8 V nominal voltage with NiMH cells and a 4.0 V output with partially discharged cells, can now be used for a 5V circuit. A single lithium-polymer cell can run a 3.3V device through its whole discharge cycle. In another typical scenario, a disposable 9V battery powering a 5V circuit can get completely discharged to 1.5V instead of cutting out at 6 V, as with typical linear or step-down regulators.
The S8V3A regulator has a shutdown feature that can also be used as an under-voltage protection mechanism for batteries that respond poorly to being over-discharged. The shutdown threshold can be set with one external resistor; please see the Shutdown section below for details.
This regulator can deliver 300 mA continuous in typical applications where the output voltage is not too far from the input voltage. The regulator has under-voltage protection, and thermal shutdown prevents damage from overheating; the board does not have reverse-voltage protection. For applications where the output is significantly different from the input, a regulator optimized for boosting (stepping up) or bucking (stepping down) is more efficient, but for small applications where efficiency is not a top priority, this board can be a convenient, general-purpose regulator to give your system a wide range of supported input voltages.
Features
- output voltage that can be higher than, the same as, or lower than the input voltage
- recommended input voltage: 2 to 12 V
- output voltage adjustable between 2 and 12 V
- typical continuous output current: 300 mA (Actual continuous output current depends on input voltage. See Typical Efficiency and Output Current section below for details)
- 1.5 MHz switching frequency
- integrated over-temperature protection
- small size: 0.40" x 0.70" x 0.15" (10 x 18 x 4 mm)
Pololu step-up/step-down voltage regulator S8V3A with included hardware. |
---|
Using the Regulator
During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.
Connections
The step-up/step-down regulator has 4 connections: input voltage (VIN), ground (GND), output voltage (VOUT), and shutdown (SHDN).
The input voltage, VIN, should be between 2 and 12 V. GND should be at 0 V. Inputs below 1.5V can shut down the voltage regulator; inputs above 16V can destroy the regulator. Therefore, you should ensure that noise on your input does not exceed the 16 V maximum, and you should be wary of destructive LC spikes (see below for more information).
The output voltage, VOUT, is determined by the trimmer potentiometer position. See the Setting the Output Voltage section below for details.
Shutdown
If the voltage on the SHDN pin drops below 1.1 V, the regulator will turn off. The SHDN pin is pulled up to VIN by a 130 kΩ resistor; by adding a resistor between SHDN and GND, you can set the shutdown voltage by making the SHDN pin cross 1.1 V when your input voltage crosses your desired threshold. If we call that threshold VOFF, the equation for the resistor to connect from SHDN to GND is:
For example, if you want to set VOFF to 4 V, so that your battery does not discharge below 4 V, you should connect a 40kΩ resistor between SHDN and GND. The shutdown circuitry has a 0.6 V hysteresis; after the input voltage falls below VOFF the regulator will not turn back on until the voltage rises above VOFF + 0.6 V.
Setting the Output Voltage
The output voltage can be measured using a multimeter. Turning the potentiometer clockwise increases the output voltage. The output voltage can be affected by a screwdriver touching the potentiometer, so the output measurement should be done with nothing touching the potentiometer.
Output voltage settings for the step-up/step-down voltage regulator S8V3A. |
---|
Typical Efficiency and Output Current
The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator typically has an efficiency of 55 to 65%. The maximum achievable output current of the board depends on many factors, including the ambient temperature, air flow, heat sinking, and the input and output voltage. See the graphs below for more details on the typical efficiency and output currents for this voltage regulator.
LC Spikes
When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s absolute maximum voltage (16 V), the regulator can be destroyed. In our tests with typical power leads (~30" test clips), input voltages above 10 V caused spikes over 16 V. If you are connecting more than 10 V or your power leads or supply has high inductance, we recommend soldering a 33ěF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 25 V.
More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.
People often buy this product together with:
Pololu Adjustable Boost Regulator 4-25V |
Pololu Adjustable Boost Regulator 2.5-9.5V |
Baby Orangutan B-328 + USB AVR Programmer Combo |
Other products in the same category (16)
No product available!
No product available!
No product available!
No product available!
1 MPx camera module with OV9281 sensor that works with all versions of the Raspberry Pi. Equipped with a shutter and an IR filter, it is characterized by good sensitivity. ArduCAM B0225
No product available!
No product available!
No product available!
No product available!
Board is a board with Atmel ATSAMW25 chip, the system has SAMD21 microcontroller (ARM, Cortex-M0+ core, 256 kB Flash, 8 KB SRAM) treated with 48 MHz clock. The ATSAMW25 chip also includes the WINC1500 Wi-Fi module. The user has at his disposal: 8 I/O lines, 12 PWM channels, 7 analog inputs. Arduino MKR1000 ABX00004
No product available!
No product available!
No product available!
No product available!
No product available!
No product available!
No product available!
No product available!