

Pololu - 2960
This compact breakout board is for ROHM’s BD65496MUV motor driver, which offers an operating voltage range of 2 V to 16 V and can deliver a continuous 1.2 A (5 A peak for a few milliseconds) to a single brushed DC motor. The motor driver features variable switching speed, allowing for PWM frequencies up to 500 kHz, two drive mode options, and built-in under-voltage and over-temperature protection; our carrier also adds reverse-voltage protection.
DESCRIPTION
Overview
The BD65496MUV from ROHM is a tiny H-bridge motor driver IC that can be used for bidirectional control of one brushed DC motor at 2 V to 16 V. It can supply up to about 1.2 A continuously and can tolerate peak currents up to 5 A for a few milliseconds. The BD65496MUV is a great IC, but its small surface-mount package makes it difficult for the typical student or hobbyist to use; our breakout board makes it easy to use with standard solderless breadboards and 0.1″ perfboards. Since this board is a carrier for the BD65496MUV, we recommend careful reading of the BD65496MUV datasheet (481k pdf). The board ships populated with SMD components, including the BD65496MUV and a reverse battery protection circuit.
BD65496MUV Single Brushed DC Motor Driver Carrier,
bottom view with dimensions.
Features
Included hardware
Two 1×6-pin breakaway 0.1″ male headers are included with the BD65496MUV motor driver carrier, which can be soldered in to use the driver with breadboards, perfboards, or 0.1″ female connectors. (The headers might ship as a single 1×12 piece that can be broken in half.) The right picture above shows the two possible board orientations when used with these header pins (parts visible or silkscreen visible). You can also solder your motor leads and other connections directly to the board.
Using the motor driver
Minimal wiring diagram for connecting a microcontroller
to a BD65496MUV Single Brushed DC Motor Driver Carrier
(default IN/IN mode).
Motor and power connections are made on one side of the board and control connections are made on the other. The driver requires an operating voltage between 2 V and 16 V to be supplied to the reverse-protected power input, VIN, and a logic voltage between 2.5 V and 5.5 V to be supplied to the VCC pin; the logic voltage can typically be supplied by or shared with the controlling device.
The BD65496MUV offers two possible control interface modes: IN/IN and EN/IN. The PWM (MODE) pin is used to select the control interface. If the PWM (MODE) pin is left disconnected or driven low, as shown in the minimal wiring diagram above, the selected interface is IN/IN, which generally requires two PWM signals, one for INA and another for INB. If this pin is driven high, as shown in the wiring diagram below, the selected interface is EN/IN, which turns the INB pin into a “motor direction” input and the INA pin into an enable input that can be supplied with a PWM signal to control speed.
Minimal wiring diagram for connecting a microcontroller
to a BD65496MUV Single Brushed DC Motor Driver Carrier
(EN/IN mode).
The PS (power save) pin can be driven low to put the driver into a low-power state and turn off the motor outputs, which is useful if you want to let the motor coast. The PS pin is pulled high through a 47 kΩ pull-up resistor on the carrier board so that the driver is enabled by default; the quiescent current draw of the board will be dominated by the current through this resistor when the pin is driven low to put the driver to sleep. In most applications, this pin can be left disconnected or can serve primarily as a way to enable coasting. For applications where a low-power mode is desirable, the 47 kΩ pull-up resistor can be removed (this resistor is located right next to the PS pin), or the logic voltage (VCC) for the driver can be dynamically supplied by a digital output of your microcontroller.
The following truth table (taken directly from the BD65496MUV datasheet) shows how the driver operates:
Pinout
PIN | Default State | Description |
---|---|---|
VIN | Reverse-protected power supply input; supply this pin with 2 V to 16 V. | |
VCC | 2.5 V to 5.5 V logic power supply connection. Logic supply current draw is typically only a few milliamps at most, so in many applications this pin can optionally be dynamically powered by a microcontroller digital output. | |
GND | Ground connection points for the motor and logic supplies. The control source and the motor driver must share a common ground. | |
OUTA | H-bridge output A. | |
OUTB | H-bridge output B. | |
PWM (MODE) | LOW | Drive mode selection pin. LOW=IN/IN; HIGH=EN/IN. |
INA | LOW | Motor control input A (functions like an enable pin in EN/IN mode). |
INB | LOW | Motor control input B (functions like a direction pin in EN/IN mode). |
PS | HIGH | Sleep/coast input. Drive low to tri-state the driver outputs and enable power-save mode. |
TR1 | LOW | Turn-on and turn-off time selection input 1. |
TR2 | LOW | Turn-on and turn-off time selection input 2. |
All of the driver inputs except PS are internally pulled low through 100 kΩ pull-down resistors. The PS pin is pulled high on the carrier board through a 47 kΩ pull-up resistor that overpowers the driver IC’s internal 300 kΩ pull-down.
The TR1 and TR2 pins control the driver’s turn-on and turn-off time. Both pins are low by default, resulting in a default turn-on time of 150 ns (typical) and a default turn-off time of 50 ns (typical); this allows for PWM frequencies up to 500 kHz. If such a high switching frequency is not required, the TR1 and TR2 inputs can be configured for longer turn-on and turn-off times to help reduce electromagnetic interference (EMI). See the datasheet for more information.
Real-world power dissipation considerations
The BD65496MUV datasheet rates this driver for a maximum continuous current of 1.2 A. In our tests, we found that the chip was able to deliver 1.2 A comfortably over the full operating voltage range, with the driver temperature only approaching the thermal shut down point at the very low end of the motor supply range. At 9 V in, we did not see the driver’s thermal shutdown activate until we pushed the continuous current past 1.5 A for many minutes, but we generally advise against running so close to the limit that the driver overheats. Our tests were conducted at 100% duty cycle with no forced air flow; PWMing the motor will introduce additional heating proportional to the frequency.
SPECIFICATIONS
Dimensions
Size: | 0.6″ × 0.6″1 |
---|---|
Weight: | 0.6 g1 |
General specifications
Motor driver: | BD65496MUV |
---|---|
Motor channels: | 1 |
Minimum operating voltage: | 2 V |
Maximum operating voltage: | 16 V |
Continuous output current per channel: | 1.2 A |
Peak output current per channel: | 5 A2 |
Maximum PWM frequency: | 500 kHz3 |
Minimum logic voltage: | 2.5 V |
Maximum logic voltage: | 5.5 V |
Reverse voltage protection?: | YES |
Notes:
1 Without included hardware.
2 For no longer than 10 ms; duty cycle < 5%.
3 TR1 and TR2 low.
RESOURCES
File downloads
Data sheet
Manufacturer BTC Korporacja sp. z o. o. Lwowska 5 05-120 Legionowo Poland sprzedaz@kamami.pl 22 767 36 20
Responsible person BTC Korporacja sp. z o. o. Lwowska 5 05-120 Legionowo Poland sprzedaz@kamami.pl 22 767 36 20
The pad for use with shallow Feather series contains two TB6612 chips that allow you to control DC motors or stepper motors. The I2C interface is used to communicate with the overlay. Adafruit 2927
Extension board with stepper motor controller based on the STSPIN820 system. Ideally suited for use, among others in 2D / 3D printers, robots, cameras. Pololu 2879
No product available!
Black Edition offers adjustable current limiting, over-current and over-temperature protection, and five different microstep resolutions. It operates from 8 V to 35 V and can deliver up to 2 A per coil with sufficient additional cooling. Pololu 2128
DRV8825 Stepper Motor Driver Module for Arduino. It allows you to control two drives, equipped with an XBee connector. DFRobot DRI0023
DC motor driver module with two channels, dedicated to use in modeling. It can be controlled by an RC transmitter and uses the PPM signal. DFRobot DFR0513
MP6550 DC motor controller module. It can work with motors supplied with voltage from 1.8 to 22 V and current consumption up to 1.7 A. Pololu 4733
DC motor driver that allows you to control the movement of three drives using the I2C interface. Connectors for self-assembly. Pololu 5034
DC motor driver with voltage 6.5 ... 40V and maximum continuous current 13A. It has the ability to easily implement the feedback loop and numerous control interfaces. Polol 3147
The board based on the L298 Dual Full-Bridge Motor Driver; can provide up to 4 Amps of current to the motors (2 Amps per motor). ROB-09571
Atmel ATmega32U4 microcontroller comes preloaded with an Arduino-compatible bootloader, and the board includes dual motor drivers that can deliver 1.7 A per channel to two brushed DC motors. Pololu 3119
Module with a 2-channel DC motor driver TB6612FNG designed to work with micro: bit. It can also control 3 servos. SB Components 14897
Programming module for AM32 and BLS32 series ESC controllers. It allows you to easily update the controller software via the USB Type-C connector. RhinoESC Crawler
No product available!
This add-on board enables a Raspberry Pi B+, Pi A+, Pi 2 or Pi 3 to drive a pair of brushed DC motors. Its dual MC33926 motor drivers operate from 5 V to 28 V and can deliver a continuous 3 A (5 A peak) per motor. The default pin mappings make it easy to get started using our provided software, but the board also exposes most of the driver chips’ I/O pins for more specialized applications.
Small size driver module TB67S279FTG stepper motor powered with 10 ... 47V voltage and working current 1.1A. The controller allows you to control the motor movement up to 7 different resolutions (up to 1/32 of a step). Polol 3098
A single-channel DC motor driver with an I2C interface. It is powered from 4.5 V to 48 V and can deliver up to 2.2 A of current. A board with connectors for mounting. Pololu 5061
No product available!
Two-channel DC motor driver based on the HR9933 circuit. It allows you to control the movement of drives with a supply voltage of up to 10 V and power consumption up to 1.5 A. DFRobot DRI0040
This compact breakout board is for ROHM’s BD65496MUV motor driver, which offers an operating voltage range of 2 V to 16 V and can deliver a continuous 1.2 A to a single brushed DC motor. Pololu 2960