Products
Categories
- Main categories
-
- 3D PRINTING
- ARDUINO
- AUTOMATION
- BOOKS
- CYBERSECURITY
- EDUCATION
- ELECTRONICS
- Cables
- Cameras and accessories
- Communication
- Conductive materials
- Connectors
- ARK connectors (Terminal Block)
- Coaxial connectors (RF)
- Connectors
- Crocodile clip
- D-Sub drawer connectors
- DC power connectors
- FFC/FPC ZIF connectors
- Goldpin connectors
- IDC connectors
- JACK connectors
- JST connectors
- Jumpers
- Memory cards slots
- Other connectors
- Pogo pin
- RJ45 connectors
- Slip ring connector
- Supports
- Szybkozłącza
- USB connectors
- USB PD Adapters for Laptops
- Cooling
- Displays
- Electronic modules
- A/D and D/A converters
- Audio
- Barcode readers
- CAN converters
- Converters USB - UART / RS232
- Data logger
- DDS/PLL generators
- Digital potentiometers
- Encoders
- Expanders of the I/O
- Fingerprint readers
- HMI modules
- Image and video
- JTAG accessories
- Keyboards, buttons
- LED drivers
- Memory card readers
- Memory modules
- Modules with power outputs
- Motor controllers
- Power modules
- RS485 converters
- RTC modules
- Servo Controllers
- TSOP infrared receivers
- USB Converters - I2C / 1-Wire / SPI
- Voltage converters
- Gadgets
- GPS
- Intelligent clothes
- LED - diodes, displays, stripes
- Luminous wires and accessories
- Machine vission (MV)
- Memory cards and other data storages
- Passive elements
- PC accessories
- Printers
- Prototype boards
- Relays
- Semiconductors
- A/C converters (ADC)
- Analog systems
- Audio systems
- Bridge rectifiers
- Button
- D/A Converters (DAC)
- DDS synthesizers
- Digital circuits
- Diodes
- Drivers of motors
- DSP microprocessors
- Energy counters
- Energy harvesting
- ESD security
- IGBT drivers and bridges
- Interface systems
- LED drivers
- Logic converters
- Memory
- Microcontrollers
- Optotriacs and optocouplers
- Other
- PLL generators
- Power systems
- Programmable systems
- Resetting systems
- RF systems
- RTC systems
- Sensors
- SoC systems
- Timery
- Touch sensors
- Transistors
- Sensors
- Accelerometers
- Air humidity sensors
- Air quality sensors
- Current sensors
- Distance sensors
- Flow sensors
- Gas sensors
- Gyroscopes
- Hall sensors
- Humidity sensors
- Infrared sensors
- Light and color sensors
- Liquid level sensors
- Magnetic sensors (compasses)
- Medical sensors
- Motion sensors
- PH sensors
- Position sensors
- Pressure sensors
- Pressure sensors
- Reflection sensors
- Sensors 6DOF/9DOF/10DOF
- Sensors of liquid quality
- Temperature sensors
- Vibration sensors
- Sound transducers
- Switches and buttons
- Cables
- FPGA DEVELOPMENT KITS
- Measuring devices
- MECHANICS
- MINICOMPUTERS (SBC)
- POWER
- RASPBERRY PI
- Accessories for Raspberry Pi
- Audio video cables for Raspberry Pi
- Case Raspberry Pi
- Cooling for Raspberry Pi
- Displays for Raspberry Pi
- Extension modules for Raspberry Pi
- Memory cards for Raspberry Pi
- Power for Raspberry Pi
- Raspberry Pi 3 model A+
- Raspberry Pi 3 model B
- Raspberry Pi 3 model B+
- Raspberry Pi 4 model B
- Raspberry Pi 400
- Raspberry Pi 5
- Raspberry Pi 500
- Raspberry Pi cameras
- Raspberry Pi Compute Module
- Raspberry Pi model A/ B+/2
- Raspberry Pi Pico
- Raspberry Pi prototyping
- Raspberry Pi Zero
- Raspberry Pi Zero 2 W
- RETIRED PRODUCTS
- SALE
- STARTER KITS, PROGRAMMERS, MODULES
- Atmel SAM
- Atmel Xplain
- AVR
- Coral
- DFRobot FireBeetle
- ESP32
- ESP8266
- Feather / Thing Plus
- Freedom (Kinetis)
- M5Stack
- Micro:bit
- Nordic nRF
- Other development kits
- Particle Photon
- Peripheral modules
- PIC
- Raspberry Pi RP2040
- RFID
- RISC-V
- Seeed Studio LinkIt
- Segger programmers
- SOFTWARE
- Sparkfun MicroMod
- STM32
- STM32 Discovery
- STM32 MP1
- STM32 Nucleo boards
- STM8
- Teensy
- Universal programmers
- WRTNode
- XIAO/Qt PY
- Atmel SAM
- WORKSHOP
- Adhesives and gluers
- Chemistry
- CNC milling machines
- Crimping tools
- Dispensing needles
- Heat-shrink tubing
- Insulation strippers
- Knives and scissors
- Laboratory power supplies
- Mikroskopy
- Mini drills and grindrers
- Organizers
- Power strips
- Power tools
- Safety glasses
- Soldering
- Antistatic mats and accessories (ESD)
- BGA balls
- BGA rework stations
- Brushes and ESD brushes
- Desoldering Wick
- Handles, magnifiers
- Heat guns
- Heaters and soldering irons
- Laminates
- Portable soldering irons
- Silicone Soldering Mats
- SMD Accessories
- Soldering accessories
- Soldering chemistry
- Soldering irons
- Soldering pastes
- Soldering pots
- Soldering stations
- Soldering tips
- Sponges and cleaners
- Stand for soldering irons
- Tin
- Tin extractors
- Ultrasonic cleaners
- Tapes (aluminum, kapton, copper, insulating)
- Tools
- Tweezers
- Vices
- 3D PRINTING
New products
New products
zł49.39 tax excl.
This sensor is a carrier/breakout board for ST’s VL53L0X laser-ranging sensor, which measures the range to a target object up to 2 m away.
Free shipping
free shipping in Poland for all orders over 500 PLN
Same day shipping
If your payment will be credited to our account by 11:00
14 days for return
Each consumer can return the purchased goods within 14 days
Overview
The VL53L0X from ST Microelectronics is a time-of-flight ranging system integrated into a compact module. This board is a carrier for the VL53L0X, so we recommend careful reading of the VL53L0X datasheet (1MB pdf) before using this product.
The VL53L0 uses ST’s FlightSense technology to precisely measure how long it takes for emitted pulses of infrared laser light to reach the nearest object and be reflected back to a detector, so it can be considered a tiny, self-contained lidar system. This time-of-flight (TOF) measurement enables it to accurately determine the absolute distance to a target without the object’s reflectance greatly influencing the measurement. The sensor can report distances of up to 2 m (6.6 ft) with 1 mm resolution, but its effective range and accuracy (noise) depend heavily on ambient conditions and target characteristics like reflectance and size, as well as the sensor configuration. (The sensor’s accuracy is specified to range from ±3% at best to over ±10% in less optimal conditions.)
Ranging measurements are available through the sensor’s I²C (TWI) interface, which is also used to configure sensor settings, and the sensor provides two additional pins: a shutdown input and an interrupt output.
The VL53L0X is a great IC, but its small, leadless, LGA package makes it difficult for the typical student or hobbyist to use. It also operates at a recommended voltage of 2.8 V, which can make interfacing difficult for microcontrollers operating at 3.3 V or 5 V. Our breakout board addresses these issues, making it easier to get started using the sensor, while keeping the overall size as small as possible.
The carrier board includes a low-dropout linear voltage regulator that provides the 2.8 V required by the VL53L0X, which allows the sensor to be powered from a 2.6 V to 5.5 V supply. The regulator output is available on the VDD pin and can supply almost 150 mA to external devices. The breakout board also includes a circuit that shifts the I²C clock and data lines to the same logic voltage level as the supplied VIN, making it simple to interface the board with 3.3 V or 5 V systems, and the board’s 0.1″ pin spacing makes it easy to use with standard solderless breadboards and 0.1″ perfboards. The board ships fully populated with its SMD components, including the VL53L0X, as shown in the product picture.
For a similar but shorter-range sensor (up to 20 cm, or 60 cm with reduced resolution) that includes ambient light sensing functionality, see our VL6180X carrier.
Specifications
- Dimensions: 0.5″ × 0.7″ × 0.085″ (13 mm × 18 mm × 2 mm)
- Weight without header pins: 0.5 g (0.02 oz)
- Operating voltage: 2.6 V to 5.5 V
- Supply current: 10 mA (typical average during active ranging)
- Varies with configuration, target, and environment. Peak current can reach 40 mA.
- Output format (I²C): 16-bit distance reading (in millimeters)
- Distance measuring range: up to 2 m (6.6 ft); see the graph at the right for typical ranging performance.
- Effective range depends on configuration, target, and environment.
- The datasheet does not specify a minimum range, but in our experience, the effective limit is about 3 cm.
Included components
A 1×7 strip of 0.1″ header pins and a 1×7 strip of 0.1″ right-angle header pins are included, as shown in the picture below. You can solder the header strip of your choice to the board for use with custom cables or solderless breadboards, or you can solder wires directly to the board itself for more compact installations.
Using the VL53L0XThe board has two mounting holes spaced 0.5″ apart that work with #2 and M2 screws (not included).
Important note: This product might ship with a protective liner covering the sensor IC. The liner must be removed for proper sensing performance.
Connections
A minimum of four connections is necessary to use the VL53L0X board: VIN, GND, SCL, and SDA. The VIN pin should be connected to a 2.6 V to 5.5 V source, and GND should be connected to 0 volts. An on-board linear voltage regulator converts VIN to a 2.8 V supply for the VL53L0X IC.
The I²C pins, SCL and SDA, are connected to built-in level-shifters that make them safe to use at voltages over 2.8 V; they should be connected to an I²C bus operating at the same logic level as VIN.
The XSHUT pin is an input and the GPIO1 pin is an open-drain output; both pins are pulled up to 2.8 V by the board. They are not connected to level-shifters on the board and are not 5V-tolerant, but they are usable as-is with many 3.3 V and 5 V microcontrollers: the microcontroller can read the GPIO1 output as long as its logic high threshold is below 2.8 V, and the microcontroller can alternate its own output between low and high-impedance states to drive the XSHUT pin. Alternatively, our 4-channel bidirectional logic level shifter can be used externally with those pins.
Pinout
PIN | Description |
---|---|
VDD | Regulated 2.8 V output. Almost 150 mA is available to power external components. (If you want to bypass the internal regulator, you can instead use this pin as a 2.8 V input with VIN disconnected.) |
VIN | This is the main 2.6 V to 5.5 V power supply connection. The SCL and SDA level shifters pull the I²C lines high to this level. |
GND | The ground (0 V) connection for your power supply. Your I²C control source must also share a common ground with this board. |
SDA | Level-shifted I²C data line: HIGH is VIN, LOW is 0 V |
SCL | Level-shifted I²C clock line: HIGH is VIN, LOW is 0 V |
XSHUT | This pin is an active-low shutdown input; the board pulls it up to VDD to enable the sensor by default. Driving this pin low puts the sensor into hardware standby. This input is not level-shifted. |
GPIO1 | Programmable interrupt output (VDD logic level). This output is not level-shifted. |
Schematic
The schematic shows the additional components the carrier board incorporates to make the VL53L0 easier to use, including the voltage regulator that allows the board to be powered from a 2.6 V to 5.5 V supply and the level-shifter circuit that allows for I²C communication at the same logic voltage level as VIN. This schematic is also available as a downloadable PDF (100k pdf).
I²C communication
The VL53L0X can be configured and its distance readings can be queried through the I²C bus. Level shifters on the I²C clock (SCL) and data (SDA) lines enable I²C communication with microcontrollers operating at the same voltage as VIN (2.6 V to 5.5 V). A detailed explanation of the I²C interface on the VL53L0X can be found in its datasheet (1MB pdf), and more detailed information about I²C in general can be found in NXP’s I²C-bus specification (1MB pdf).
The sensor’s 7-bit slave address defaults to 0101001b on power-up. It can be changed to any other value by writing one of the device configuration registers, but the new address only applies until the sensor is reset or powered off. ST provides an application note (196k pdf) that describes how to use multiple VL53L0X sensors on the same I²C bus by individually bringing each sensor out of reset and assigning it a unique address.
The I²C interface on the VL53L0X is compliant with the I²C fast mode (400 kHz) standard. In our tests of the board, we were able to communicate with the chip at clock frequencies up to 400 kHz; higher frequencies might work but were not tested.
Sensor configuration and control
In contrast with the information available for many other devices, ST has not publicly released a register map and descriptions or other documentation about configuring and controlling the VL53L0X. Instead, communication with the sensor is intended to be done through ST’s VL53L0X API (STSW-IMG005), a set of C functions that take care of the low-level interfacing. To use the VL53L0X, you can customize the API to run on a host platform of your choice using the information in the API documentation. Alternatively, it is possible to use the API source code as a guide for your own implementation.
Sample Code
We have written a basic Arduino library for the VL53L0X, which can be used as an alternative to ST’s official API for interfacing this sensor with an Arduino or Arduino-compatible controller. The library makes it simple to configure the VL53L0X and read the distance data through I²C. It also includes example sketches that show you how to use the library.
Dimensions
Size: | 0.5″ × 0.7″ × 0.085″1 |
---|---|
Weight: | 0.5 g1 |
General specifications
Resolution: | 1 mm |
---|---|
Maximum range: | 2 m2 |
Interface: | I²C |
Minimum operating voltage: | 2.6 V |
Maximum operating voltage: | 5.5 V |
Supply current: | 10 mA3 |
Identifying markings
PCB dev codes: | irs11a |
---|---|
Other markings: | 0J9776 |
Notes:
- 1 Without included optional headers.
- 2 Effective range depends on configuration, target, and environment.
- 3 Typical average during active ranging; varies with configuration, target, and environment. Peak current can reach 40 mA.
- Technical documentation - (NXP- I2C) (362,74 kB)
- Technical documentation - VL53L0X sensor documentation (917,68 kB)
- Library (API) - Raspberry (127,04 kB)
- Technical documentation - (STM Application Note - Using multiple sensors in one application) (191,06 kB)
- Libraries - Arduino (18,37 kB)
- Technical documentation - PCB dimensions (264,27 kB)
- Technical documentation - Electronic schematic (97,94 kB)
- Drilling holes (* .dxf) (1,56 kB)
- CAD 3D model (* .step) (613,02 kB)
- Manufacturer website
Responsible person BTC Korporacja sp. z o. o. Lwowska 5 05-120 Legionowo Poland sprzedaz@kamami.pl 22 767 36 20
You might also like
The X-NUCLEO-53L0A1 expansion board features the VL53L0X ranging and gesture detection sensor, based on ST’s FlightSense™, Time-of-Flight technology. It is an evaluation board that provides an introduction to the ranging and gesture detection capabilities of the VL53L0X module
Integrated circuit - a distance sensor based on the technique of measuring the time between transmitting a light wave and returning its reflection (so-called Time of Flight - ToF). The system transmits data via the I2C bus and can measure distances up to 2 meters. The system has a small size and fits in the Optical LGA12 housing
No product available!
Other products in the same category (16)
Ultrasonic distance sensor (sonar) with a measuring range from 30 cm to 500 cm. It allows to read data through one of three interfaces: variable width pulse, analog output or RS232/TTL interface. DFRobot SEN0269
No product available!
Module with a proximity sensor operating in the infrared band. It allows you to detect obstacles in the range of 2 to 30 cm. Waveshare Infrared Proximity Sensor
No product available!
Ultrasonic distance sensor (sonar) with a measuring range from 25 cm to 1068 cm. It allows you to read data through one of three interfaces: AE (analog envelop), analog output or RS232 interface. DFRobot SEN0280
No product available!
Single point LIDAR based on ToF (Time of Flight) distance sensor with measuring range up to 8 m with a resolution of 1 cm. Thanks to the unique optical construction it can achieve stable, accurate and very sensitive measurement. Benewake TF-Luna
No product available!
Laser scanner using 360-degree measurement, taking samples at a frequency of up to 16 kHz. It is capable of generating 2D point map information within a 12-meter radius. Seeed Studio 114110128
No product available!
Laser distance sensor with a measuring range from 0.1 m to 12 m. Communicates via the UART or I2C interface. Benewake TFmini Plus
No product available!
Laser distance sensor with a range of 5 cm to 15 m. It has a high accuracy of ± 2 cm and a resolution of 1 mm. DFRobot SEN0524
No product available!
ToF distance sensor (Time of flight) with a range of up to 5 m. The module is supplied with the voltage of 3.3 V and communicates via the I2C interface. SparkFun SEN-19037
Module with ultrasonic distance sensor HC-SR04 with a range of up to 400 cm. It communicates via the I2C interface. SparkFun SEN-15171
Laser distance sensor with a large measuring range from 0.2 m to 350 m. Optimized for industrial applications and work in difficult weather conditions. Benewake TF350 Analog
No product available!
Laser distance sensor with a large measuring range from 0.1 m to 100 m. Optimized for industrial applications and work in difficult weather conditions. Benewake TF03-100 RS485/RS232
No product available!
Module with ToF VL53L5CX sensor with a matrix of 64 pixels and a range of up to 4 m. It is equipped with a Qwiic connector and communicates via the I2C interface. SparkFun SEN-18642
Ultrasonic distance sensor (sonar) with a measuring range from 15 to 318 cm with the possibility of detecting objects in a selected zone. It allows you to read data via the USB interface. DFRobot SEN0279
No product available!
Ultrasonic ToF (time-of-flight) rangefinder with a range of 4 cm to 1.2 meters. The sensor is able to simultaneously measure the range of several objects in its field of view. Communicates via I2C. SparkFun SPX-17271
No product available!